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Quantum Nature of the Big Bang
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Some long-standing issues concerning the quantum nature of the big bang are resolved in the context of
homogeneous isotropic models with a scalar field. Specifically, the known results on the resolution of the
big-bang singularity in loop quantum cosmology are significantly extended as follows: (i) the scalar field
is shown to serve as an internal clock, thereby providing a detailed realization of the ‘‘emergent time’’
idea; (ii) the physical Hilbert space, Dirac observables, and semiclassical states are constructed rigorously;
(iii) the Hamiltonian constraint is solved numerically to show that the big bang is replaced by a big
bounce. Thanks to the nonperturbative, background independent methods, unlike in other approaches the
quantum evolution is deterministic across the deep Planck regime.
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Thanks to the influx of observational data, recent years
have witnessed enormous advances in our understanding of
the early Universe. To interpret the present data, it is
sufficient to work in a regime in which space-time can be
taken to be a smooth continuum as in general relativity,
setting aside fundamental questions involving the deep
Planck regime. However, for a complete conceptual under-
standing as well as interpretation of the future, more re-
fined data, these long-standing issues will have to be faced
squarely. Examples are: (i) how close to the big bang does
the smooth space-time of general relativity make sense? In
particular, can one show from first principles that this
approximation is valid at the onset of inflation? (ii) Is the
big-bang singularity naturally resolved by quantum grav-
ity? Or, is some external input such as a new principle or a
boundary condition at the big-bang essential? (iii) Is the
quantum evolution across the ‘‘singularity’’ deterministic?
In the pre-big-bang and Ekpyrotic scenarios, for example,
the answer has been in the negative [1]. (iv) If the singu-
larity is resolved, what is on the ‘‘other side’’? Is there just
a quantum foam far removed from any classical space-
time, or, is there another large, classical universe? The
purpose of this Letter is to summarize results from recent
analytical and numerical investigations within loop quan-
tum cosmology which address these and related issues.

Loop quantum gravity (LQG) is a background indepen-
dent, nonperturbative approach to quantum gravity [2].
Loop quantum cosmology (LQC) focuses on symmetry
reduced models but carries out quantization by mimicking
the constructions used in the full theory [3]. Results to date
in this area fall in two broad categories: (a) resolution of
the big-bang singularity using modifications of the gravi-
tational Hamiltonian due to quantum geometry [4] and
(b) phenomenological predictions from effective equa-
tions that incorporate the modifications of the matter
Hamiltonians due to quantum geometry [see, e.g., [5,6] ].
As in the first category, we focus on the more fundamental
issues. While previous results showed that the LQC evo-
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lution does not break down at the singularity, as pointed
out, e.g., in [7], they did not shed light on what happened
before. By constructing the missing conceptual and mathe-
matical infrastructure, we show that the Universe has a
classical pre-big-bang branch, joined deterministically to
the post-big-bang branch by the LQC evolution. Our de-
tailed analysis of the Planck regime also provides tools to
test the validity of assumptions underlying phenomeno-
logical predictions.

We will illustrate effects of quantum geometry on both
the gravitational and matter Hamiltonians through a simple
example: the spatially homogeneous, isotropic k � 0 cos-
mologies with a massless scalar field. Although the ap-
proach admits generalizations, we focus on these models
because a singularity is unavoidable in their classical the-
ory. The question is if it is naturally tamed by quantum
effects. The answer in the ‘‘geometrodynamical’’ frame-
work used in older cosmologies turns out to be in the
negative [8]. For example, if one begins with a semiclas-
sical state representing a classical universe at late times and
evolves it back via the Wheeler-DeWitt equation, one finds
that it just follows the classical trajectory into the big-bang
singularity [9]. In LQC, the situation is very different. This
may seem surprising at first. For, the system has only a
finite number of degrees of freedom and von Neumann’s
theorem assures us that, under appropriate assumptions,
the resulting quantum mechanics is unique. However, for
reasons we will now explain, LQC does turn out to be
qualitatively different from the Wheeler-DeWitt theory
[10].

Because of spatial homogeneity and isotropy, one can fix
a fiducial (flat) triad oeai and its dual cotriad o!i

a. The
SU(2) gravitational spin connection Aia used in LQG has
only one component c which furthermore depends only on
time; Aia � co!i

a. Similarly, the momentum Eai canoni-
cally conjugate to Aia—representing a (density weighted)
triad—has a single component p; Eai � p�deto!�oeai . p is
related to the scale factor a via a2 � jpj. However, p is not
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restricted to be positive; under p! �p the metric remains
unchanged but the spatial triad flips the orientation. The
pair (c; p) is canonically conjugate: fc; pg � �8�G�=3�,
where � is the Barbero-Immirzi parameter.

Quantization is carried out by closely mimicking the
procedure used in full LQG [10]. There, the elementary
variables which have unambiguous operator analogs in
quantum theory are the holonomies h of connections Aia
and the (smeared) triads Eai . Now, background indepen-
dence leads to a surprisingly strong result [11]: in essence,
the basic operator algebra generated by holonomies and
triads admits a unique irreducible, diffeomorphism cova-
riant representation. In this representation, there are opera-
tors ĥ representing holonomies and Ê representing
(smeared) triads. But there are no operators representing
connections Aia themselves. In the cosmological model
now under consideration, holonomies along a straight
line of (oriented) length � (with respect to the fiducial
triad oeai ) are almost periodic functions of c of the form
N��c� :� exp�i�c=2�. (The N� are the analogs of spin-
network functions in the full theory.) In the quantum
theory, then, we are led to a representation in which
operators N̂� and p̂ are well defined, but there is no
operator corresponding to the connection c itself (because
the 1-parameter group N̂� is not weakly continuous in �).
This new quantum mechanics is inequivalent to the
Wheeler-DeWitt theory already at a kinematical level. In
particular, the gravitational part of the Hilbert space is now
L2� �RBohr; d�Bohr�, the space of square integrable functions
on the Bohr compactification of the real line, rather than
the standard L2�R; d�� [10]. While in the semiclassical
regime LQC is well approximated by the Wheeler-DeWitt
theory, important differences manifest themselves at the
Planck scale. These are the hallmarks of quantum geome-
try [2,3].

The new representation also leads to a qualitative dif-
ference in the structure of the Hamiltonian constraint op-
erator: the gravitational part of the constraint is a differ-
ence operator rather than a differential operator as in the
Wheeler-DeWitt theory. The derivation [9,10] can be
summarized briefly as follows. In the classical theory,
the gravitational part of the constraint is given byR
d3x�ijke�1Eai E

b
jFabk where e � j detEj1=2 and Fkab is

the curvature of the connection Aia. The part of this opera-
tor involving triads can be quantized [10] using a standard
procedure introduced by Thiemann in the full theory.
However, since there is no operator corresponding to the
connection itself, one has to express Fkab as a limit of the
holonomy around a loop divided by the area enclosed by
the loop, as the area shrinks to zero. Now, quantum ge-
ometry tells us that the area operator has a minimum non-
zero value, �, and in the quantum theory it is natural to
shrink the loop only till it attains this minimum. There are
two ways to implement this idea in detail. Here, we will use
the one which has already appeared in the literature
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[2,3,10] although it has certain drawbacks in the semiclas-
sical regime, especially in more general models. The sec-
ond method will be discussed in the second of the detailed
papers [9], which will also show that the quantum bounce
and deterministic evolution across the Planck regime per-
sist if the second and more satisfactory method is used. In
both cases, it is the existence of the ‘‘area gap’’ � that leads
one to a difference equation.

Let us represent states as functions ���;��, where � is
the scalar field and (modulo a fixed multiple of ‘2

Pl) the
dimensionless real number � is the eigenvalue of p̂ [10].
Then in LQC the (self-adjoint) Hamiltonian constraint is
given by [9]

@2
����B�����1�C��������4�o;���C

o������;��

�C��������4�o;����:�����;��; (1)

where C����� ��G=9�3
o�jj��3�oj

3=2�j���oj
3=2j;

C���� � C���� 4�o�; Co��� � �C���� � C����
and where �6=8��‘2

Pl�
3=2B��� are the eigenvalues of the

operator jp̂j�3=2 [3]. The fixed real number �o is deter-
mined by the area gap; �8��=6��o‘

2
Pl � �.

Now, in each classical solution, � is a globally mono-
tonic function of time and can therefore be taken as the
dynamical variable representing an internal clock. In quan-
tum theory, even on shell, there is no space-time metric.
But since the quantum constraint (1) dictates how ���;��
‘‘evolves’’ as � changes, it is convenient to regard the
argument � in ���;�� as ‘‘emergent time’’ and � as
the physical degree of freedom. A complete set of Dirac
observables is provided by the constant of motion p̂� and
operators �̂j�o

determining the value of � at the ‘‘instant’’
� � �o.

Physical states are the (suitably regular) solutions to
Eq. (1). The map �̂ defined by �̂���;�� � ����;��
corresponds just to the flip of orientation of the spatial triad
(under which geometry remains unchanged); �̂ is thus a
large gauge transformation on the space of solutions to
Eq. (1). One is therefore led to divide physical states into
sectors, each providing an irreducible, unitary representa-
tion of this symmetry. As one would expect, physical
considerations imply that we should consider the symmet-
ric sector, with eigenvalue �1 of �̂ [9].

To endow this space with the structure of a Hilbert space,
we use the ‘‘group averaging method’’ [12]. The techni-
cal implementation of this procedure is greatly simplified
by the fact that the difference operator � on the right side
of (1) is independent of � and can be shown to be self-
adjoint and positive definite [on the Hilbert space
L2� �RBohr; B���d�Bohr�]. Since � is a difference operator,
the resulting physical Hilbert space H has sectors H �
which are superselected; H � ��H � with � 2 �0; 2�o�.
States ���;�� in H � (are symmetric under the orienta-
tion inversion �̂ and) have support on points � � 	��
4n�o. Let us consider a generic H�. [The small technical
1-2
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FIG. 1 (color online). The absolute value of the wave function
� is plotted as a function of� and� (whose values are shown in
multiples of �o). For visualization clarity, only the values of j�j
greater than 10�4 are shown. Being a physical state, � is
symmetric under �! ��.
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differences in the exceptional cases are discussed in [9];
they do not affect the main conclusions.] Wave functions
���;�� solve (1) and are of positive frequency with
respect to the ‘‘internal time’’ �. Equivalently, they satisfy
the ‘‘positive frequency’’ square root of Eq. (1):

�i@�� �
�����
�
p

� (2)

and the inner product is given by:

h�1j�2iphy �
X

�2f	��4�oZg

B��� ��1��;���2��;��; (3)

where, as usual, Z denotes the set of integers. On these
states, the Dirac observables act in the expected fashion:

p̂�� � �i@@�� (4a)

�̂j�o
���;�� � ei

���
�
p
����o�����;�o�: (4b)

One can also begin with the complete set of Dirac observ-
ables (4) and show that (3) is the unique inner product
which makes them self-adjoint.

To construct semiclassical states and for numerical
simulations, it is convenient to express physical states as
linear combinations of the eigenstates of p̂� and �. We
first note that, for �
 �o, there is a precise sense [9,10]
in which the difference operator � approaches the
Wheeler-DeWitt differential operator �, given by

��f���� � �16�G=3��3=2�
����
�
p

f0�0: (5)

[Thus, if one ignores the quantum geometry effects, Eq. (1)
reduces to the Wheeler-DeWitt equation @2

�� � ���.]
The eigenfunctions

e k��� � �1=4�� � j�j1=4eik lnj�j (6)

of � are labeled by a real number k and its eigenvalues are
given by !2 � ��G=3��16k2 � 1�. The complete set of
eigenfunctions ek��� of the discrete operator � is also
labeled by a real number k and ek��� are well approxi-
mated by ek��� for �
 �o [9]. The eigenvalues !2�k� of
� increase monotonically with jkj. Finally, the ek���
satisfy the standard orthonormality relations hekje0ki �
��k; k0�. A physical state ���;�� can therefore be ex-
panded as:

���;�� �
Z 1
�1

dk ~��k�e�s�k ���e
i!�k��; (7)

where ~��k� is arbitrary (but suitably regular), !�k� is
positive, and e�s�k ��� � �1=

���
2
p
��ek��� � ek�����. Thus,

each physical state is characterized by a free function
~��k�. [For proofs and subtleties, see [9].]

Since we have the explicit Hilbert space and a complete
set of Dirac observables, we can now construct states
which are semiclassical at late times—e.g., now—and
evolve them numerically ‘‘backward in time.’’ There are
three natural constructions to implement this idea in detail,
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reflecting the freedom in the notion of semiclassical states.
The main results in all three cases are the same [9]. Here
we will report on the results obtained using the strategy that
brings out the contrast with the Wheeler-DeWitt theory
most sharply.

As noted before, p� is a constant of motion. For the
semiclassical analysis, we are led to choose a large value
p�� (
 @ in the classical c � G � 1 units. In the closed
model, for example, this condition is necessary to ensure
that the Universe can expand out to a macroscopic size.)
Fix a point (��; �o) on the classical trajectory with p� �
p�� which starts out at the big bang and then expands,
choosing �� 
 1. We want to construct a state which is
peaked at (��; p��) at the initial ‘‘time’’ � � �o and fol-

low its ‘‘evolution’’ backward. Let ~��k� be a Gaussian,

peaked at a value k� given by p�� � ��
�����������������������
16�G@2=3

p
�k�. Set

���;�o� �
Z 1
1
dk ~��k�ek���e

i!�k���o����; (8)

where �� � �
������������������
3=16�G

p
lnj��j ��o. It is easy to verify

that ���;�o� is the desired initial data, sharply peaked at
p� � p�� and � � ��. If evolved using the Wheeler-

DeWitt analog �i@�� �
�����
�

p
� of Eq. (2), it would re-

main sharply peaked at the chosen classical trajectory and
simply follow it into the big-bang singularity [9]. However,
if it is evolved via (2), the situation becomes qualitatively
different. The state remains sharply peaked at the classical
trajectory until the matter density reaches a large critical
value (which depends on p��), but then bounces, joining on
to the ‘‘past’’ portion of a trajectory which was classically
headed towards the big crunch (see figures).

To ensure that these results are robust, a variety of
numerical simulations were performed to integrate
Eq. (1) using the adaptive step, 4th order Runge-Kutta
method. Because of space limitation, we will summarize
1-3
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FIG. 2 (color online). The expectation values of Dirac observ-
ables �̂j� are plotted (in multiples of �o), together with their
dispersions. They exhibit a quantum bounce which joins the
contracting and expanding classical trajectories marked by
fainter lines.
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only one of these. Here, we chose � � 2�o and initial data
with p�� � 104

���������
G@2
p

, �� � 105�o, and the spread in the

Gaussian ~��k� given by �p�=p
�
� � 7:5� 10�3, where

�p� is the uncertainty in p�. The boundary of the numeri-
cal grid was chosen at 1:5�� [where j���;�o�j< 10�24].
On the boundary, Eq. (2) was approximated by the
Wheeler-DeWitt equation and ‘‘outgoing wave’’ boundary
conditions were imposed. Results of the evolution exhibit a
quantum bounce as shown in Figs. 1 and 2. Away from the
Planck regime the uncertainties in the Dirac observables
are essentially constant.

We conclude with a few remarks. (1) The main limita-
tion of this analysis is the restriction to homogeneity and
isotropy. The approach can be readily extended to incor-
porate anisotropic models and potentials for scalar fields.
However, incorporation of inhomogeneities has only just
begun. The hope is that the deterministic evolution of LQC
will enable one to evolve perturbations across the Planck
regime. (2) The dramatic difference between the predic-
tions of the Wheeler-DeWitt theory and LQC can be
intuitively understood through effective equations which
can be derived from Eq. (1) using certain approximations
[9]. One finds that quantum geometry (which is ignored in
the Wheeler-DeWitt theory) modifies the Friedmann equa-
tions. The modifications are significant only in the Planck
regime and come with the sign required to make gravity
repulsive. (3) A common feature with the early LQC
papers is that we did not have to introduce new physical
input such as a boundary condition at the singularity. We
only asked that the quantum state be semiclassical at late
times. This is an observational fact rather than a new
theoretical input or a philosophical preference. However,
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there are also notable differences from the existing LQC
literature. First, while much of the phenomenological work
[3] in LQC has incorporated quantum geometry effects
only on the matter Hamiltonian, here they were incorpo-
rated also in the gravitational part. Second, we constructed
the physical Hilbert space, Dirac observables, and semi-
classical states, thereby extracting physics of the Planck
regime, going significantly beyond the demonstration of
singularity resolution. Specifically, our results show that
the quantum geometry in the Planck regime serves as a
‘‘quantum bridge’’ between large classical universes, one
contracting and the other expanding. Finally, the idea that
the scalar field can be used as an internal clock has
appeared before, especially in [13]. However, that analysis
used conventional quantum mechanics rather than the Bohr
compactification which descends from full LQG. Our final
physical Hilbert space is also different; its construction is
not motivated by the Kodama state.
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