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Universality Away from Critical Points in Two-Dimensional Phase Transitions
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The p-state clock model in two dimensions is a system of discrete rotors with a quasiliquid phase in a
region T1<T<T2 for p>4. We show that, for p > 4 and above a temperature Teu, all macroscopic
thermal averages become identical to those of the continuous rotor (p � 1). This collapse of thermody-
namic observables creates a regime of extended universality in the phase diagram and an emergent
symmetry, not present in the Hamiltonian. For p � 8, the collapse starts in the quasiliquid phase and
makes the transition at T2 identical to the Berezinskii-Kosterlitz-Thouless (BKT) transition of the
continuous rotor. For p � 6, the transition at T2 is below Teu and no longer a BKT transition. The results
generate a range of experimental predictions, such as the motion of magnetic domain walls, and limits on
macroscopic distinguishability of different microscopic interactions.
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A cornerstone in the study of phase transitions is the
concept of universality, stating that entire families of sys-
tems behave identically in the neighborhood of a critical
point, such as the liquid-gas critical point in a fluid or the
Curie point in a ferromagnet, at which two phases become
indistinguishable. Near the critical point, thermodynamic
observables do not depend on the details of intermolecular
interactions, and the critical exponents, which quantify
how observables go to zero or infinity at the transition,
depend only on the range of interactions, symmetries of the
Hamiltonian, and spatial dimensionality of the system.
Universality arises as the system develops fluctuations of
all sizes near the critical point, which wash out the details
of interaction and render the system scale invariant [1,2].

Here we report a new, stronger form of universality. We
find the remarkable result that, in a specific family of
systems, different members behave identically both near
and away from critical points—we call this extended
universality—if the temperature exceeds a certain value
Teu. In this regime, universality occurs not just at a critical
point but over a whole range of temperatures, yields iden-
tical values of all (macroscopic) thermodynamic observ-
ables (such as energy or magnetization), not just identical
critical exponents—we call this collapse of thermody-
namic observables—for different systems, runs over
Hamiltonians with different symmetries, and is not induced
by large fluctuations. As the collapse maps Hamiltonians
with different symmetries onto one and the same thermo-
dynamic state, the system exhibits a symmetry not present
in the Hamiltonian. The added symmetry at high tempera-
ture is the counterpart of broken symmetry at low tempera-
ture. To the best of our knowledge, no such collapse of
thermodynamic observables has been observed before.

The family under consideration is the p-state clock
model, also known as the p-state vector Potts model or
Zp model [3], in two dimensions, with Hamiltonian
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where each spin, si, can make p angles �i � 2�ni=p (ni �
1; . . . ; p), the sum is over nearest neighbors on a square
lattice, and the coupling is ferromagnetic, J0 > 0. The p
discrete orientations, imposed by a crystallographic sub-
strate and molecular shapes, make Hp invariant under the
transformations �i ! �i � 2�n=p (cyclic group Zp). The
model interpolates between spin-up or -down of the Ising
model [4] (p � 2) and the continuum of directions of the
planar rotor, or XY, model [5,6] (p � 1). It has been
studied to track how the phase transition in the Ising model,
with spontaneously broken symmetry in the ferromagnetic
phase, gives way to the Berezinskii-Kosterlitz-Thouless
(BKT) transition [6], without broken symmetry, in the rotor
model. As the symmetry of Hp changes with p, so may the
universality class of the phase transitions.

Elitzur et al. [7] showed that the model has a rich phase
diagram: for p � 2; 4, it belongs to the Ising universality
class, with a low-temperature ferromagnetic phase and a
high-temperature paramagnetic phase; for 4< p<1,
three phases exist—a low-temperature ordered and a
high-temperature disordered phase, as in the Ising model,
plus a quasiliquid intermediate phase. Duality transforma-
tions [7,8] and renormalization group (RG) treatments
[9,10] shed light on the phases in terms of a related model,

Hfhpg � �J0

X

hi;ji

cos��i � �j� �
X

i

X

p

hp cos�p�i�; (2)

where the �i’s are continuous and the hp’s are symmetry-
breaking fields, mimicking the constraint to p spin direc-
tions in the clock model. The clock model obtains by
letting hp ! 1 for a selected p. José et al. [10] showed,
in a self-dual approximation of (2), that the fields were
relevant for p < 4, and irrelevant for p > 4. But (1) is not
self-dual for p > 4, and RG approximations examining the
effect of the discreteness of the angular variables are
delicate near p � 6. As a result, the transition points of
(1) in the three-phase region are not precisely known.
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We establish the phase diagram, collapse of observables,
and associated temperature Teu by Monte Carlo (MC)
simulations [11,12]. The simulations were performed on
a square lattice of size N � L	 L, with L � 8–72, and
periodic boundary conditions. We sampled 105–107 con-
figurations, with equilibration runs of p	 �1000–5000�
MC steps, a step being one attempt to change all spins.

Figure 1 summarizes our results. The Ising model shows
the expected phase transition at TIsing

c � 2= ln
1�
���
2
p
� ’

2:27. The case p � 4 also shows a single transition, at
Tc � TIsing

c =2 ’ 1:13. Most interesting is the case p > 4. It
hosts the two transitions predicted by Elitzur et al. [7],
illustrated in Fig. 2, and the collapse of thermodynamic
observables at T > Teu. At Teu the system switches from a
p-dependent state (T < Teu; discrete symmetry) to a state
indistinguishable from p � 1 (T > Teu; continuous sym-
metry). For p � 4 there is no collapse.

We characterize the transitions using Binder’s fourth-
order cumulants [11] in magnetization, UL � 1� 1

3 	

hm4i=hm2i2, and energy, VL � 1� 1
3 he

4i=he2i2. The high-
temperature transition, T2, is obtained from the fixed point
of UL. The latent heat, proportional to limL!1
2=3�
minTVL�, vanishes, signaling a second-order transition.
The low-temperature transition, T1, is obtained from the
temperature derivative of the magnetization, @hjmji=@T,
and @UL=@T, which diverge as L! 1. Finite-size scaling
(FSS) of the derivatives’ minima yields T1 � limL!1T1;L.
We find T1 � 4�2=� ~T2p

2�, with ~T2 ’ 1:67
 0:02.
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FIG. 1 (color online). Phase diagram of the p-state clock
model. The Ising model, p � 2, exhibits a single second-order
phase transition, as does the p � 4 case, which is also in the
Ising universality class. For p > 4, a quasiliquid phase appears,
and the transitions at T1 and T2 are both second order. The line
Teu separates the phase diagram into a region where the thermo-
dynamic observables do depend on p, below Teu, and a region
where their values are p independent, above Teu. For p � 8, we
observe Teu < T2 � TBKT ’ 0:89. Throughout, temperatures are
in units of J0=kB, where kB is Boltzmann’s constant.
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Figure 3 shows selected thermodynamic observables:
heat capacity, cF��hH2i�hHi2�=
L2T2�, and magnetiza-
tion, hmi � hMi=L2 � h�j

PN
i�1 cos�ij; j

PN
i�1 sin�ij�i=L2,

per spin. Figure 3 proves the collapse of thermodynamic
observables: cF and hjmji are manifestly p independent for
p > 4 and T > Teu, where

Teu �
4�2

p2TBKT

; (3)

and TBKT ’ 0:89; and the internal-energy differences
abruptly vanish at T � Teu.

The specific form of Teu�p� can be understood as
follows. (i) The large-p, small-��i � �j� expansion of
(1) yields a characteristic temperature, ��2�=p�2, such
that all averages become p-independent whenever
T=�2�=p�2 � 1, implying an asymptotic collapse of ob-
servables. (ii) Elitzur et al. [7] noted that discreteness of the
angles �i becomes irrelevant for the critical properties of
(1), for sufficiently large p, implying the collapse of ob-
servables at critical points, T2. (iii) A similar irrelevance of
the discreteness of angles, imposed by hp ! 1, was ob-
served for (2), subject to T > 4�2=�p2Tk�, where Tk ’
1:35 is the BKT point of the self-dual approximation of
(2) [10]. (iv) For the full collapse of thermodynamic ob-
servables in the clock model, these partial results sug-
gest that a necessary condition for collapse is T >
4�2=�p2TBKT�. The fit of our data for Teu�p�, yielding
(3), validates this expectation and shows that the condition
is necessary and sufficient.

The collapse (noncollapse) above (below) the curve
Teu�p� makes far-reaching predictions for the transitions
T1 and T2, which we now test. We begin with T2. We
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FIG. 2 (color online). Three-phase regime for p � 8, in terms
of the specific heat, cF, transition temperatures T1, T2 (the
transitions do not occur at the peaks of cF), and typical spin
configurations. The correlation function, hsi; sji, goes to a non-
zero constant at large distance ji� jj at T < T1 (long-range
order); decays as a power law of distance at T1 < T < T2 [quasi-
long-range order [5,6]; typical configurations contain vortices];
and decays exponentially with distance at T > T2 (disorder).
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FIG. 4 (color online). Helicity modulus, �, and fourth-order
helicity, �4, for p � 8 (a), (c) and p � 6 (b), (c) across the phase
transition T2. The bottom curve in (a), (b), for reference, is the
modulus for the planar rotor, which jumps from 2TBKT=� (full
circle) to zero at T � TBKT. For all p � 8, limL!1� � 0.
Extrapolation of �4 to the thermodynamic limit yields two
classes of results (d): �4 converges to the universal value
�0:126
 0:005 for p � 8, and to zero for p � 7. This implies
that � has a discontinuous jump to zero at T2 if and only p � 8.
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FIG. 3 (color online). Heat capacity (a), magnetization (b), and
difference of internal energy per spin relative to the planar-rotor
model (c). The data correspond to a system size of L � 72 (N �
5; 184 spins). All curves coalesce above Teu (arrows) for p � 5
(collapse of thermodynamic observables, extended universality).
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observe that T2 > Teu for p � 8, which implies that the
transition T2 must be BKT for p � 8. Previous work
advanced only the plausibility of such universality. To
test our assertion, beyond the equality T2 � TBKT, we
equate BKT behavior to the following planar-rotor
properties [6]: (i) discontinuous jump to zero of the he-
licity modulus, ��T�BKT� � 2TBKT=�; (ii) exponentially
diverging correlation length, �� exp
c=jT � TBKTj

1=2�;
(iii) temperature-dependent power-law decay of two-point
correlation functions and magnetization, with exponents
��TBKT� � 1=4, and ~� � 3�2=128, respectively [13].

Our simulations fully confirm these properties at T2 and
p � 8 [12]. We illustrate this for the discontinuity of the
helicity modulus. Following the Minnhagen-Kim stability
argument [14], we evaluate the change in free energy when
a twist � is applied to the spins:

f �
�

2
�2 �

�4

4!
�4 � � � � : (4)

Figure 4 shows � and �4 (fourth-order helicity) as a
function of T and system size L for p � 8. At T2,
limL!1�4 < 0, so if limL!1� went to zero continuously
as T ! T�2 , the free energy would turn negative and the
system would become unstable as T ! T2. This contra-
diction implies that � goes to zero discontinuously. The
same result is obtained for all p � 8, as predicted by the
collapse of observables. Conversely, the noncollapse of
observables at T2 for p � 7 suggests that the transition at
p � 7 differs from BKT. This is indeed the case: � does
not vanish, and �4 converges to zero as L! 1. The
14060
nonzero helicity modulus and its continuity at T2 make
the transition manifestly non-BKT, according to our crite-
rion. Other critical properties computed at T2 also differ
from the BKT values [12]. Moreover, visibly T2 > TBKT

(Fig. 1). Thus, contrary to prior conjectures that the tran-
sition at T2 and p � 6; 7 is BKT-like [7,10,15,16], we find
that it differs significantly from BKT. Specifically, our
analysis shows that a twist at T�2 costs much more energy,
f � 1

2 ��2 �O��6�, than in the BKT case, f � O��6�.
We turn to the low-temperature transition, T1, which

also has been argued to be BKT-like for p � 6 [16,17].
The noncollapse of observables at T1 for all finite p sug-
gests, and our simulations substantiate [12], that this tran-
sition, too, differs from BKT.

Thus the collapse of thermodynamic observables has
remarkable consequences on the phase diagram of the
clock model and resolves long-standing questions of sim-
ilarities and differences with the planar-rotor model. When
present, T > Teu, the collapse causes the spins to lose their
identity as discrete-symmetry variables and become indis-
tinguishable from the continuous-symmetry variables of
the planar rotor. At critical points, T2 for p � 8, it guar-
antees that all critical properties are identical to those of
the BKT transition. Away from critical points, it guarantees
that the quasiliquid phase and disordered phase are identi-
cal to those of the planar rotor. When the collapse is absent,
T < Teu, the spins retain their discrete symmetry, and all
critical points, T2 for p < 8 and T1 for p <1, are dis-
tinctly non-BKT.
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Our results raise important questions and implications.
Just as universality at a critical point is accompanied by
invariance of the system under the scale transformation
ri ! �ri, even though the Hamiltonian has no such sym-
metry, extended universality is accompanied by invariance
under the transformation �i ! �i � �, � arbitrary, even
though (1) is invariant only under discrete rotations. Thus
both universalities are generated by an emergent symme-
try, not present in the Hamiltonian. What makes extended
universality different is that the symmetry is present over a
whole range of temperatures, not just at the critical point,
giving it the status of a ‘‘protected’’ property [18] over a
correspondingly wide range of temperatures. This sug-
gests that thermal averages at T > Teu should be expres-
sible in terms of a coarse-grained Hamiltonian invariant
under rotation by �, and that this representation is exact.
The construction of such a representation, and accordingly
the origin of extended universality, is an open problem.
Related questions are: if the thermodynamic observables
show p-dependent ferromagnetic ordering below T1, but
all p dependence is lost above Teu, what is the nature of the
region T1 < T < Teu? Is the transition from uncollapsed to
collapsed at Teu, at fixed p, a phase transition in itself? If
so, what is the nature of the nonanalyticity at Teu?

A range of experimental systems, from thin magnetic
films to monolayers of adsorbed molecules [19], have been
modeled by dipoles restricted to p orientations. Our results
imply that p-state characteristics can be observed only at
low temperatures, T < Teu�p�. On the high side, T >
Teu�p�, we expect the results to be relevant for the design
of dense layers of supercritically adsorbed gases for fuel
storage [20,21], and vortex dynamics to move magnetic
domain walls in ‘‘magnetic race-track memory’’ [22]. E.g.,
the low energy cost of a twist for p � 8 suggests an easy
motion of domain walls. The collapse of observables may
be studied directly in a monolayer of rotaxane, a molecular
wheel threaded by a molecular axle, on a single-crystal
surface [23]. If the wheels have p-fold symmetry, modulo a
polar group mediating the interaction between neighboring
wheels, their dynamics should be governed by (1). For p �
8, the hallmark of the collapse will be that the heat capacity
peaks at T ’ 0:37 and coalesces with the p � 1 curve at
T � Teu ’ 0:69. The collapse may also induce a change in
the NMR signal of the polar group, as the group switches
from a discrete rotor at T < Teu to a continuous rotor at
T > Teu. Other experimental platforms may be rotors with
a magnetic ion at the center, driven by light [24].

It is a tenet in statistical mechanics that there is a one-to-
one correspondence between microscopic dynamics and
macroscopic observations. Our results present a significant
counterexample: systems with different Hamiltonians may
produce identical thermodynamics, over a wide range of
temperatures. How ubiquitous is this phenomenon? This
many-to-one map of Hamiltonians onto thermodynamic
14060
states demonstrates previously unknown limits on the mac-
roscopic distinguishability of different microscopic inter-
actions and raises the question of how such interactions can
be distinguished experimentally.
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