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Layered Complex Networks
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Many complex networks are only a part of larger systems, where a number of coexisting topologies
interact and depend on each other. We introduce a layered model to facilitate the description and analysis
of such systems. As an example of its application, we study the load distribution in three transportation
systems, where the lower layer is the physical infrastructure and the upper layer represents the traffic
flows. This layered view allows us to capture the fundamental differences between the real load and
commonly used load estimators, which explains why these estimators fail to approximate the real load.
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In recent years, studies of biological, social, infrastruc-
ture, or technological networks have drawn a substantial
amount of attention in the physics community. Although
these networks are usually considered as distinct objects,
they are often a part of larger complex systems, where a
number of coexisting topologies interact and depend on
each other. For instance, the topologies of the Internet at
the IP layer [1], of the World Wide Web (WWW) [2], or of
the networks formed by peer to peer (P2P) applications [3],
although studied separately, are closely related: Each
WWW or P2P link virtually connects two IP nodes.
These two IP nodes are usually distant in the underlying
IP topology, and the virtual connection is realized as a path
found by IP routers. In other words, the graph formed by an
application is mapped on the underlying IP network.
Moreover, the IP links are in turn mapped on the physical
layer [4] that consists of a mesh of optical fibers usually
buried in the ground along roads, rails, or power lines. The
resulting topologies at the three layers are very different
from each other.

Another important class of real-life systems is transpor-
tation networks. Graphs derived from the physical infra-
structure of such networks were analyzed on the examples
of a power grid [5], a railway network [6], road networks
[7], or urban mass transportation systems [8]. This ap-
proach often gives a valuable insight into the studied
topology, but it ignores the real-life traffic pattern.
Interestingly, the networks of traffic flows were studied
separately, for instance, the flows of people within a city
[9] and commuting traffic flows between different cities
[10]. These studies, in turn, neglect the underlying physical
topology. A comprehensive view of the system often re-
quires one to analyze both layers (physical and traffic)
together. Only in some particular cases is one layer suffi-
cient. This is the case, e.g., in airport networks [11], where
all traffic flows are one-hop long and the full knowledge of
the traffic pattern is introduced into the physical graph by
setting the edge weights equal to the amount of traffic they
carry. However, in the presence of traffic flows longer than
one hop, a weighted physical graph is not sufficient.
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Imagine, for instance, that on a path of a long traffic flow
f, one physical edge fails, causing f to disappear. This will
free some resources on all physical edges originally used
by f, which can be evaluated only if we know the full path
taken by f. In other words, the dynamical analysis of the
transportation network requires the knowledge of the traf-
fic graph and of the actual routes of the traffic flows in the
physical graph.

The above examples call for the introduction of addi-
tional layers to the description of some complex systems.
In this Letter, we propose a general multilayer model. We
explain it on the example of two layers; all the definitions
naturally extend to any number of layers. In the two-layer
model, the lower-layer topology is called a physical graph
G?® = (V?, E?), and the upper-layer topology is called a
logical graph G* = (V4, E*). We assume that the sets of
nodes at both layers are identical, i.e., V¢ = VA butas a
general rule, we keep the indices ¢ and A to make the
description unambiguous. Let N = |V¢| = |V*| be the
number of nodes. The physical and logical graphs can be
directed or undirected, depending on the application. The
nodes and edges can have weights assigned to them and
denoted by w(-), with w = 1 for unweighted graphs. Every
logical edge e* = (u*, v*) is mapped on the physical graph
as a physical path M(e?) C G?® connecting the nodes u?
and v?, corresponding to u* and v*. This path may be
given explicitly by the data or defined in some general
form, such as a shortest path. The set of paths correspond-
ing to all logical edges is called mapping M(E*) of the
logical topology on the physical topology. Now the load [
of a node v® is the sum of the weights of all logical edges
whose paths traverse v®:

I(v?) = w(et). (D

erl vPeM(er)

In a transportation network, /(v?) is the total amount of
traffic that flows through the node v? [12]; if the logical
graph is unweighted, /(v?) counts the number of logical
edges that are mapped on v®. A simple example illustrat-
ing the above definitions is given in Fig. 1(a).
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FIG. 1 (color online).

Tlustration of the two-layer model with the logical graph G* and the physical graph G%. (a) A simple example

showing the actual mapping M(E*) of G* on G¢. The logical edge et is mapped on G? as the path M(ej‘) = (v‘f’, vg’, vf) Assuming
that G* is unweighted, the loads of the three indicated nodes are l(v‘lf’) =3, l(vg’ ) =2, and l(v_f’ ) = 4. (b) Two layers in the EU
transportation network. The nodes are the train stations. The edges in the physical graph are the existing rail tracks connecting
neighboring stations. Every edge in the logical graph connects the first and the last station of a particular train route; its weight reflects
the number of trains following this route in any direction. (c)—(f) Basic characteristics of the EU network (WA and CH yield similar
results): (c) node degree distribution in the physical graph; (d) node degree distribution in the logical graph; (e) edge weight
distribution in the logical graph; (f) the distribution of the lengths of traffic flows, counted in a number of hops % in the physical graph.

Here we apply this two-layer framework to study trans-
portation networks. The undirected, unweighted physical
graph G¢ will henceforth capture the physical infrastruc-
ture of a transportation network, and the logical graph G*
will reflect the undirected traffic flows. All data studied in
this Letter are extracted from timetables of public trans-
portation systems, with the help of the algorithms de-
scribed in Ref. [13]. A timetable gives the exact route of
each vehicle (bus, train, etc.), which translates directly into
a logical edge e* (connecting the first and the last station)
and its mapping M (e”). The number of vehicles following
the same path in both possible directions defines the flow
intensity—the weight w(e*) of the logical link [14].

We study three examples of transportation networks,
with sizes ranging from city to continent. As an example
of a city, we take the mass transportation system (buses,
trams, and metros) of Warsaw (WA), Poland. At a country
level, we study the railway network of Switzerland (CH).
Finally, we investigate the railway network formed by
major trains and stations in most countries of central
Europe (EU); its fragment is shown in Fig. 1(b). The basic
characteristics of these networks can be found in Table I
and in Figs. 1(c)-1(f). All physical topologies are con-
nected, planar or close to planar, with the diameter d? in

TABLE 1. The studied data sets. N is the number of nodes,
|E?| (|E|) is the number of edges in the physical (logical)
graph, d? is the diameter of the physical graph, and “#
Vehicles” is the total number of vehicles.

Data set N |[E®] 4% |E*  # Vehicles
WA - Warsaw 1529 1827 90 324 26075
CH - Switzerland 1679 1750 142 539 7482
EU - Europe 6276 7273 181 6623 54073

the order of O(+/N), and node degree distributions decay-
ing exponentially [Fig. 1(c)]. These features are common
to many physical transportation graphs, such as road net-
works and railway systems. The logical graphs are strik-
ingly different. They are sparse and have multiple
components, among which are many isolated nodes (the
intermediate stations). Their degree distributions are right-
skewed [Fig. 1(d)], meaning that there is a small number of
nodes with very high degree. Similar right-skewed distri-
butions are observed for the weights of logical edges
[Fig. 1(e)]. Finally, in Fig. 1(f), we compare the length
distribution of real traffic flows with the length distribution
of all-to-all shortest paths. The former is very much left-
skewed, which means that the real flows tend to be local.

Knowing the topologies and the mapping of both layers,
we can easily compute the load of a node with Eq. (1). For
a comparison, we present below two load estimators based
exclusively on the physical graph G®. Our first metric is
node degree k?. It seems natural that the nodes with high
degree carry more traffic than the less connected nodes.
Our second metric is betweenness b¢ [15]. The between-
ness of a vertex v is the fraction of shortest paths between
all pairs of vertices in a network that pass through v. If
there is more than one shortest path between a given pair of
vertices, then all such paths are taken into account with
equal weights summing to one. Betweenness aims at cap-
turing the amount of information passing through a vertex.
Indeed, many authors take betweenness as a measure of
load either directly [16,17] or with slight modifications
[18]. The geographical patterns formed by the distributions
of the real load, node degree, and betweenness differ sub-
stantially [see Figs. 2(a)—2(c)]. To quantify these differ-
ences, in Fig. 2(d) we present the scatter plots of the two
load estimators versus the real load [. Surprisingly, con-
trary to the commonly admitted view, in our data set the
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(a) Node degree k® (b) Betweenness b®

0.51

(c) Real load [

FIG. 2. EU data set (WA and CH yield similar results). The first three figures present the physical layout of the (a) node de-
gree k?, (b) betweenness b?, and (c) real load /. The size of a node is proportional to the measured value. In (d), we present the scatter
plots of the (top) node degree k¢ and (bottom) betweenness b? versus the real load I. In the top left corner of every plot, we give the

value of the corresponding Pearson’s correlation coefficient.

node degree approximates the real load better than the be-
tweenness (its Pearson’s coefficient is higher). Neverthe-
less, both of them are very far from being satisfactory. For a
value of the load [ =~ 102, the corresponding values of
betweenness h? cover more than 2 orders of magnitude.
So big disparities may strongly affect the results of the
network performance analysis based on the topological
load estimators. For instance, the evolution of cascading
failures [17] crucially depends on the load distribution.
Why do load estimators fail to mimic the real load
pattern? The layered view of the system is very helpful
in answering this question. First, observe that the ways we
compute node degree, betweenness, and real load can be
unified by recasting the first two in the two-layer setting.
Indeed, both the node degree and the betweenness can be
computed as the node load (1) in systems with specific
logical topologies mapped on the physical graph G using
shortest paths. We denote these logical graphs by G2¢ and

G2¢, for the node degree k% and the betweenness b?,
respectively. They are defined as follows. In the case of
the node degree, pick G//<\¢ = G?: The logical graph is
identical to the physical graph G?. Hence, the mapping
of G;{‘,,, on G? reduces trivially to single-hop traffic flows,
and (1) boils down to /(v?) = k?(v?). For the between-
ness, G2¢ is an unweighted and complete (fully connected)
graph. Indeed, the definition of betweenness requires one
to find shortest paths between every possible pair of verti-
ces. Note that the mapping defined by betweenness splits
the path (and its weight) if there is more than one shortest
path, whereas the shortest-path mapping simply returns
one of them. However, in large graphs this difference is
negligible, especially if the shortest-path algorithm picks
one of the possible paths at random.

The same two-layer methodology can, therefore, be used
to compute node degree, betweenness, and real load.
Moreover, in all three cases we use the same physical
graph G® and a mapping that follows the shortest path.
(The real-life flows almost always coincide with shortest
paths connecting their end nodes.) Consequently, all the
differences between the three metrics are completely cap-

tured by the logical graphs G},, G, and G*. We compare

them in Table II. The graph G,)(‘(,, is moderately dense,
planar, unweighted, with the degree distribution decaying
exponentially. The edge length, counted in the number of
hops in the mapping of this edge, is equal to 1 for all edges
of G},. In contrast, the graph G}, is an unweighted,
complete graph, with every node of degree equal to N —
1. In G;‘d,, we find both short and long edges; their distri-
bution is bell-shaped, as shown by the “all-to-all’’ curve in
Fig. 1(f). Finally, the real-life logical graph G* is sparse,
weighted, and has rather local edges. Moreover, the node
degree and edge weight distributions of G* are both very
right-skewed.

There are, thus, a number of fundamental differences
between the three logical graphs G,, G, and G*. They
explain why the node degree and betweenness fail to
mimic the real load distribution. We expect to observe
similar differences in other fields. For instance, in the
Internet, the distribution of intensities of traffic flows
(which corresponds in this Letter to the edge weights in
the logical graph) was shown to be heavy-tailed [19,20].
This is known in the field as ‘“‘the elephants and mice
phenomenon” [19], where a small fraction of flows is
responsible for carrying most of the traffic. Moreover, the
number of flows originating from a given node (which is
equivalent to the node degree in the logical graph) was also
shown to follow a power-law distribution [20].

To summarize, in this Letter we have introduced a
framework for studying complex systems in which we

TABLE II.  The properties of the logical graphs G,, G,,, and
G*. “Edge length” is the number of hops in the mapping of the

edge on the physical graph.

Gy T G b G e T
Property /@ %
|EA| =|E?]  =NWN-1/2 <|E?|
Planar Yes No No
Weights w(e?) =1 =1 Right-skewed
Degrees k(v*) Exponential = N — 1 Right-skewed
Edge lengths =1 Bell-shaped Exponential
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distinguish graphs on two or more layers. We have shown
on the example of transportation networks how the layered
view can facilitate the description and analysis of such
systems. In a traditional one-layer view of a network, we
compared three load metrics (degree, betweenness, and
real load) and discovered that they yield very different
load distributions. Since the ways of constructing the
load metrics vary greatly, it seems difficult to speak about
the origins of these differences in a systematic way.
However, each of the three load metrics can be recast in
a two-layer view as a logical, load generating graph
mapped onto the physical graph. The fundamental proper-
ties of the load metrics are then captured by their logical
graphs, providing us with a common ground for a system-
atic comparison. Our analysis revealed that these logical
graphs belong to completely different classes, and, there-
fore, the three studied load metrics are inherently different.

Understanding the reasons standing behind the load dis-
tribution is only one feature made possible by our layered
approach. It may also completely change our view on the
error and attack tolerance [21] of many systems. A failure
of a single physical edge affects all logical edges that are
mapped on it. Consequently, a tiny, seemingly unharmful
(from one-layer perspective) disruption of the physical
graph might destroy a substantial part of the logical graph,
rendering the whole system useless in practice. It would be
interesting to study how the topological properties at dif-
ferent layers affect this kind of interaction.
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