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We show experimentally that in a free-surface granular flow the fluctuating velocity brings about
momentum transfer at a considerable rate only very close to the free surface. Away from the free surface,
where the flow is dense and stratified (or laminar), the fluctuating velocity plays no prominent dynamic
role and stems passively from a kinematic constraint: The strata of particles must shake laterally as they
slip past one another in the direction of the mean flow. Based on this insight, we formulate a simple model
for the fluctuating velocity of dense granular flows. The predictions of the model agree well with our

experimental measurements.
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In fluid dynamics, the velocity fields are customarily
split into two additive components, the mean velocity
and the fluctuating velocity [1]. The fluctuating velocity
has been studied extensively in liquid flows—where it has
a strong effect on the transfer of mass, heat, and momen-
tum [2]—but not so extensively in granular flows. Yet, in
spite of the differences between granular and liquid flows,
the effect of the fluctuating velocity may be just as strong
in granular flows as in liquid flows and relevant to many
technological processes and natural phenomena that in-
volve granular matter [3].

One notable difference between granular flows and lig-
uid flows concerns precisely the fluctuating velocity. In
granular flows, there is usually a fluctuating velocity [4]. In
liquid flows, however, there is a fluctuating velocity only
if the mean velocity is high enough for the flow to be
turbulent [5]. In the case of liquid flows, the advent of a
fluctuating velocity signals a switch in the shear stress-
producing mechanism [2]. Where the mean velocity is
low, the shear stress 7 stems from the viscosity. Then
T = uy—the Newton stress, where u is the viscosity
and 7y the shear strain rate. Where the mean velocity is
high, the production of shear stress becomes rapidly domi-
nated by the momentum transfer effected by the fluctuating
velocity. Then 7 = pu’v’'—the Reynolds stress, where p is
the density, u’ and v’ are mutually orthogonal components
of the fluctuating velocity, and () denotes time average [2].
Because of this marked dependence on the mean velocity,
the stress-producing mechanisms are spatially disjoint in a
liquid flow. For example, in a pipe flow, the Newton stress
is dominant close to the wall and the Reynolds stress away
from the wall.

Since a granular flow is usually ““turbulent’ (in the sense
that it usually contains a fluctuating velocity), it might be
thought that the Reynolds stress [6] contributes a sizable
fraction of the applied stress everywhere in the flow. Yet in
this Letter we show that, just as is the case in liquid flows,
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in free-surface granular flows the stress-producing mecha-
nisms are spatially disjoint: The momentum transfer is
appreciable close to the free surface, but away from the
free surface, where the mean velocity is low and the flow
dense, the Reynolds stress accounts for only a small frac-
tion of the applied stress. This result suggests that, in dense
granular flows, the fluctuating velocity is mostly passive
and, further, that the fluctuating velocity, the shear strain
rate, and the structure of the flow are connected by a purely
kinematic relation.

In our experiments, we use a transparent drum of di-
ameter 30 cm halfway filled with spherical plastic or steel
beads of diameter d = 2 or 3 mm. The depth of the drum is
about 2.5d. We rotate the drum about its axis with angular
velocities w = 1 to 1.5 rpm. At these angular velocities,
the beads move relative to one another only in a steady,
shallow surficial layer—the flowing layer [7]—whose free
surface forms a constant angle « with the horizon
[Fig. 1(a)]. We focus a digital camera on the deepest
portion of the flowing layer, where the flow is uniform in
the x direction, and collect 1024 images at a rate of 500 Hz.
Subsequently, we use a computer program [8] to determine
the coordinates of each individual bead center in each
image (with a resolution better than d/100) and evaluate
the velocity vectors of the bead centers throughout the
experiment [Fig. 1(b)] as well as the trajectories of the
bead centers [Figs. 1(c) and 1(d)]. Last, we use a simple
method [9] to compute six Eulerian fields: the mean vol-
ume fraction of beads f(y), the mean velocity i(y), the
Reynolds normal stress og.(y) = fv'v/(y), the Reynolds
shear stress 7p.(y) = fu'v'(y), the applied normal stress
o,(y) = gcosa [} f(n)dn, and the applied shear stress
7,(y) = gsina [} f(n)dn. Here y is the depth within the
flowing layer, u and v are the velocities in the x and y
direction, respectively, ' = u — i and v =v —v = v
are the fluctuating velocities, g is the gravitational accel-
eration, and the stresses are normalized by the density of
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FIG. 1. (a) Schematic of the partially filled rotating drum.
Inside the flowing layer (indicated in the figure), the beads
move primarily parallel to the free surface, from left to right
in the x direction. Outside the flowing layer, the beads move in
solidlike rotation with the drum. The rectangle marks the area
covered by the video images. (b) Instantaneous velocity vectors
drawn on part of an image from an experiment with plastic
beads, d = 2 mm, and @ = 1 rpm. (In reality, these are average
velocity vectors between two successive images.) Trajectory of a
bead center at a depth (c) y = 1d (in the upper part of the flowing
layer) and (d) y = 5d (in the lower part of the flowing layer).

the beads. In Fig. 2, we plot the Eulerian fields from a
representative experiment.

Figure 2(a) suggests that the flowing layer may be
divided into two parts. The upper part is marked by a
variable f(y); it extends from the top of the flowing layer
to a depth y = 2d. The lower part is marked by a constant
f(y); it extends from y =~ 2d to the bottom of the flowing
layer (y = 8d). The image in Fig. 1(b) suggests that, in the
upper part of the flowing layer, the flow is sparse (as
opposed to dense). A bead in the sparse flow makes brief
sporadic contacts with neighboring beads as it moves for-
ward with high i [Fig. 1(c)]. These contacts are collisional
and can effect considerable momentum transfer. Thus, the
Reynolds stresses account for a sizable fraction of the
applied stresses in the upper part of the flowing layer
[Figs. 2(c) and 2(d)]. On the other hand, the image in
Fig. 1(b) suggests that, in the lower part of the flowing
layer, the flow is dense. A bead in the dense flow makes
simultaneous prolonged contacts with several neighboring
beads as it moves forward with low & [Fig. 1(d)]. These
contacts are noncollisional and cannot effect considerable
momentum transfer. Thus, the Reynolds stresses account
for a negligible fraction of the applied stresses in the lower
part of the flowing layer [Figs. 2(c) and 2(d)].

From the previous paragraph, we conclude that over
most of the flowing layer the granular flow is dense, the
mean volume fraction is constant, and the Reynold stresses
are negligible. We identify this dense granular flow of
constant f with the “solidlike regime” of Orpe and
Khakhar [10]. These authors have remarked that the solid-
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FIG. 2. Eulerian fields from an experiment with plastic beads,
d=3mm, and w = 1 rpm. (a) Mean volume fraction. (For
comparison, in a square packing f = 0.524, and in a hexagonal
packing f = 0.605.) The inset illustrates the method of compu-
tation of the fields [9]. (b) Mean velocity. Inset: The same in a
linear-log plot (A), showing that for y > 6d the decay is ex-
ponential with a decay length of 1.1d (B), in good agreement
with the experiments of Ref. [17]. (c) Reynolds (A) and applied
(B) normal stress (normalized by the density of the beads).
Inset: The same, plotted using a linear-log scale. (d) Reynolds
(A) and applied (B) shear stress (normalized by the density of the
beads). Inset: The same, plotted using a linear-log scale.

like regime can be modeled using the theory of plasticity.
The same conclusion holds for the dense granular flow, in
which the dominant shear stress-producing mechanism—
friction—is suitably described by the theory of plasticity
of Mohr and Coulomb, for example [11].

We have established that the fluctuating velocity does
not play a prominent dynamic role in dense granular flow.
We surmise that the fluctuating velocity is the passive
outcome of a kinematic constraint: In a dense granular
flow, a bead is always in contact with its neighboring
beads, and to slip past them it must find its way around
them, tracing a circuitous trajectory as it deviates now and
again from the direction of the mean velocity. A mathe-
matical description of this scenario is facilitated by the
structure of the dense granular flow, in which the beads are
arranged in strata parallel to the free surface of the flowing
layer. [A telling signature of the stratified structure of the
flow is apparent in the plot of f(y) in Fig. 2(a), in the form
of an oscillation of wavelength equal to one bead diame-
ter—the distance between adjacent strata of beads [12].]
Let us number the strata of beads starting with O for the
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stratum at the bottom of the flowing layer. (Thus, the mean
velocity of stratum 0 is zero, it = 0, and the mean velocity
of stratum 1 is positive, ii; > 0.) As stratum i slips on the
wavy surface of stratum i — 1 (Fig. 3), the beads in stratum
i must shake relative to the beads in stratum i — 1 with a
frequency v; = Aii;/d and a maximum shaking velocity
proportional to Af;, where Aii; = i1; — i;_,. For simplic-
ity, we assume the shaking velocity to be harmonic in time.
Then we can write an expression for the shaking velocity in
the y direction in the form Av!= &, A, cosQmv;1),
where £, is a proportionality constant. Because each stra-
tum slips over the one below it, the beads in stratum i shake
in the y direction relative to the beads at the bottom of the
flowing layer with a total shaking velocity Z’,ﬁi’l Avj,
which we identify with v}, the y component of the fluctu-
ating velocity at the depth of stratum i. Thus, v =
&, S Adip cos(2myit). In a similar manner, we can
compute the x component of the fluctuating velocity at
the depth of stratum i as u} = &, Y5=1 Aii; cos(2mv,t +
), where £, is a proportionality constant and ¢ is a phase
angle between the shakings in the y and the x directions.

To compare the predictions of the slip-and-shake model
of the previous paragraph with our experimental mea-
surements, we evaluate the correlations vivl, wiu}, and
ujv}. For example, viv) = limr_(1/T) [{ vividr =
(1/2)& 320 70 Amdi sy = (1/2)€) 3171 (Aw,)?,
where we have taken into account that 2lim;_,.(1/7) X
[§ cos2arvyt) cos(2myt)dt = 5—the Kronecker delta
function [6; =1 for k=1 and 6, = 0 for k # []. To
derive a theoretical expression for the field v'v/(y) in terms
of the shear strain rate, y(y) = dii(y)/dy, we write Aii;, =
v1d and turn the sum over the strata into an integral across
the flowing layer [13], with the final result

— d (v
Vv/(y) = 512;5 fy Y (m)dn, @))
y

where y,, is the depth at the bottom of the flowing layer. By
proceeding in a similar way, we conclude that

— d
W'(y) = €05

5 fyb ¥*(n)dn )
,

and
T2 T (v — d (v .2
WV0) = L eosd [ Pman. O
.

To obtain values for &, £, and ¢, we fit the correlations of
(1)=(3), respectively, to the corresponding experimental
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FIG. 3. Simplified geometry of the “slip-and-shake” model.

correlations [14]. Since (1)—(3) apply only where the
flow is dense, we perform the fits over the lower part of
the flowing layer, starting at a nominal depth of 2d. [To
compute the integrals of (1)—(3), we use the experimental
7(y).] For example, for an experiment with plastic beads,
d=2mm, and w = 1 rpm, we obtain &, =0.9, &, =
1.2, and ¢ = 1.4 rad. Figure 4(a) shows that the attendant
fit is quite good (for y > 2d). In particular, the model
predicts very low-amplitude oscillations in v'v/(y),
u'u'(y), and u'v'(y), in accord with experiments. [Note
that y%(y) displays high-amplitude oscillations [12]; the
very low-amplitude oscillations predicted by the model
stem from the integrals in (1)—(3), i.e., from the nonlocal
character of the model.] The values of &, and £, are of
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FIG. 4 (color online). Fits of (1)—(3) (solid lines) to the cor-
responding experimental correlations (points). The fits are lim-
ited to the lower part of the flowing layer (y > 2d), where the
flow is dense and the model applies. (a) Plastic beads, d =
2mm, w=1rmpm; &, =09, £ =12, and ¢ = 1.4 rad.
(b) Steel beads, d =2 mm, w =1 rpm; &, =09, &, = 1.3,
and ¢ = 1.4 rad. (c) Plastic beads, d =3 mm, w = 1 rpm;
£,=08, £,=0.9, and ¢ = 1.3 rad. (d) Plastic beads, d =
3mm, w = 1.5pm; &, = 0.7, £, = 1.0, and ¢ = 1.4 rad.
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order 1, as expected [15]. The small value of cos¢ indi-
cates that the correlation is weaker between v’ and ' than
between v’ and itself, in accord with the observation that
TRe < ORe In the dense flow [Figs. 2(c) and 2(d)].

To test the model further, we obtain &, &,, and ¢ for a
few additional experiments with beads of various types and
different angular velocities. We perform the required fits
over the lower part of the flowing layer, starting at the same
nominal depth as before, y = 2d, even though there might
be variations from experiment to experiment. Yet our
results (Fig. 4) indicate that &,, &,, and ¢ are largely
independent of the bead type as well as of the angular
velocity. We conclude that the fluctuating velocity corre-
lations depend on the variables of a dense granular flow
only through d and y(y), as evinced by (1)-(3).

To summarize, we have adduced evidence that in dense
granular flow the fluctuating velocity may be modeled as
the inevitable shaking induced in a stack of wavy strata—
an apt description of the structure of the flow—when the
strata are made to slip past one another. Based on this
model, we have derived Eqs. (1)—(3). The bead diameter
appears as a factor on the right-hand sides of (1)—(3),
indicating that the fluctuating velocity is a direct manifes-
tation of the granularity of the flow. Although the fluctuat-
ing velocity leads to negligible Reynolds stresses in dense
granular flow, it can still provide a measure of indirect
energy sufficient to drive self-diffusion [16] and segrega-
tion—i.e., processes associated with the granularity of the
flow [12]. If thought of as a granular temperature, this
energy establishes a link between dense granular flow
and several problems in which diffusion, creep, magneti-
zation, and other processes are thermally mediated at the
atomic or molecular level.
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a depth y, B, [inset in Fig. 2(a)]. Associated with B,, we
compute one point of the mean velocity field i(y) =
iip, = (3>, Viul)/> ;> , VP, one point of the mean
volume fraction field f(y) = fo =Y,5,V:/1024V,
and one point of, say, the Reynolds shear stress 7g.(y) =
fulv'g =35, VE(ub — i )v?/1024V. Here the sum
in i extends over all 1024 images, the sum in b extends
over all the beads, u? and v? are the components of the
instantaneous velocity of the bead b in the image i, V? is
the portion of the volume of the bead b which falls within
B, in the image i, and V = wdd (the volume of B,), where
w is the width of the bin in the x direction. The fields
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The amplitude of the trajectory of stratum i relative to
stratum i — 1 must scale with d, which implies that £, and
&, must be of order 1.

In dense granular flow, the self-diffusion and the fluctuat-
ing velocity are not two aspects of the same phenomenon,
as is the case in gaseous flow, where the fluctuating
velocity is the velocity of the self-diffusing molecules
minus the mean velocity of the flow. In dense granular
flow, on the other hand, the fluctuating velocity shakes the
particles and impels them to jump between strata (and
therefore to self-diffuse) [12]; yet these jumps are infre-
quent, because they require the presence of voids, which
are rare [12], and the velocity associated with the jumps
(i.e., with the self-diffusion) can account for only a neg-
ligible portion of the fluctuating velocity. In fact, in the
absence of voids, the fluctuating velocity would remain
virtually unchanged, but self-diffusion would cease. Thus,
the self-diffusion and the fluctuating velocity are coupled
but distinct phenomena in dense granular flow.
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