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Scenario for Spin-Glass Phase with Infinitely Many States
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A possible phase in short-range spin glasses exhibiting infinitely many equilibrium states is proposed
and characterized in real space. Experimental signatures in equilibrating systems measured with scanning
probes are discussed. Some models with correlations in their exchange interactions are argued to exhibit
this phase. Questions are raised about more realistic models and related issues.
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The term ‘‘spin glass’’ refers to both experimental sys-
tems and theoretical models with enough randomness and
frustration to preclude conventional magnetic order [1].
Despite 30 years of study, the nature of possible spin-glass
phases remains controversial. Even the most studied
model, the Edwards-Anderson (EA) Ising model with
H � �

P
hi;jiJij�i�j with �i � �1 and short-range cou-

plings Jij independently drawn from a symmetric distribu-
tion [2], is still not understood. The droplet or scaling
scenario for the spin-glass phase has only one pair of states
and no known inconsistencies [3,4]. Parisi has hypothe-
sized the existence of infinitely many equilibrium states as
found in mean-field spin glasses [5]. But in finite-
dimensional systems the nature of and relationship be-
tween such putative states remain obscure.

In this Letter, we introduce the montage phase, a con-
crete scenario for a spin-glass phase with many incongru-
ent states, states differing by other than symmetry in most
of the system [6]. By characterizing this phase and its
experimental signatures, we also generate questions about
more general short-range spin glasses. Since real systems
do not have the independence and special statistical sym-
metry of EA models, we consider a broader class of spin-
glass models. For illustration, we construct special models
that exhibit infinitely many incongruent states at low
temperatures.

For experiments it is essential to address a fundamental
question: How can one determine—even in principle—
the number of equilibrium states in a system too large to
equilibrate fully? An ideal experiment would map repeat-
edly the time evolution after quenches of spin correlations
in the same large region of size ‘. After a sufficiently long
waiting time, a map of local magnetizations in the region
will resemble one of the equilibrium states. The number of
states distinguishable in the region that can arise from
random initial conditions gives the number of distinct
such maps, N �‘�. If there are infinitely many incongruent
equilibrium states, N �‘� will increase with ‘.

The nature of ground states and their excitations usually
determines the equilibrium behavior of low temperature
phases. Infinite-system ground states are configurations
whose energy cannot be lowered by any finite change.
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These can be constructed using sequences of fixed bound-
ary conditions on a set of nested boxes, fBLg, to generate
sequences of finite-region ground states. Each such se-
quence that converges yields an infinite-system ground
state. At nonzero temperature, a similar procedure yields
infinite-system equilibrium states, pure states. While most
sequences will not converge, any sequence has at least one
convergent subsequence [7]. Motivated by Newman and
Stein [8], on whose work we build, we call the distribution
of states that appear in the ensemble of sequences of
random boundary conditions the equilibrium metastate.
With short-range interactions, the number of possible
boundary conditions on a box is exponential in its surface
area so the number of equilibrium states distinguishable in
a box of size ‘ grows no faster than ec‘

d�1
[9].

The physics of equilibration from random initial con-
ditions bears some resemblance to formal limits of bound-
ary condition sequences. After a quench, the length scale,
Lw, over which the system is in local equilibrium increases
with waiting time, tw. After times larger than tw, regions
smaller than Lw resemble physical equilibrium states.
More precisely, in scale-‘ subregions with ‘� Lw, corre-
lations averaged over times short compared to tw are
approximated by those of one of the infinite-system equi-
librium states [10–12]. The particular infinite-system state
that appears depends upon the surroundings of the
scale-Lw region, which itself resembles an equilibrated
finite-sized system with effective boundary conditions im-
posed by these surroundings. The maturation metastate
gives the distribution of equilibrium states that appear
over the ensemble of all possible initial conditions and
ensuing long-time dynamical histories.

In a ferromagnet, for example, from random initial con-
ditions the " and # states appear equally frequently, but
which occurs in a given region varies stochastically with tw
as domain walls pass through. Typical scale-Lw regions
will contain at most a few domain walls—no more than
boundary conditions on such regions can induce in equi-
librium. In principle, there are also equilibrium states with
a fixed flat infinite domain wall, but these arise only from
special initial conditions or special sequences of boundary
conditions and thus appear with zero probability in the
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metastates. In any case, domain-wall states differ from
both the " and # states only in a negligible fraction of the
system and thus are regionally congruent [6] to these basic
states.

The equilibrium and maturation metastates of random
Ising systems can contain more than two states. A three-
dimensional system with all ferromagnetic couplings ex-
cept for couplings of random sign across a single plane
through the origin provides a simple example. The cou-
pling between half-spaces scales as

������
L2
p

in an L� L� L
box centered at the origin so boundary conditions can
control each half-space separately. The resulting four
ground states are regionally congruent because almost
every region is the same in each, up to the global symmetry.
The metastates contain all four states with equal weight
since the effects of random boundary conditions and of
random couplings are comparable. The balance between
these determines the orientations of each half-space in any
given finite system or at any given time.

A system with many incongruent states would, in con-
trast to one with only domain-wall states, exhibit multiple
locally distinguishable spin maps for any large tw
[4,6,11,13]. Can this occur in short-range Ising spin-glass
models?

It is instructive to show first that some finite-dimensional
Ising models can have infinitely many incongruent states.
This can occur if there are many infinite clusters of spins
that are separately controllable.

Consider a d-dimensional lattice consisting of a stack of
slabs of thickness s and dimension dc � d� 1. Couplings
within each slab are ferromagnetic, while those between
them (across borders of dimension �dc � d� 1) have ran-
dom signs. The energy to change the orientation of a size ‘
region within an isolated slab scales as ‘�c with �c � d�
2, the cluster stiffness exponent. Interslab random coupling
scales as ‘�c with �c � �dc=2. An Imry-Ma argument [14]
implies that each slab is ferromagnetic provided d� 2>
�d� 1�=2. Boundary conditions can control the O�‘� slabs
in box B‘ independently. Thus there are N �‘� �
exp�‘ log2=s� possible slab orientations, each correspond-
ing to an infinite-system state. Two randomly chosen
ground states are incongruent since most sites are near a
slab with different relative orientation in the two states.
Isotropic versions of this model can be made from inter-
penetrating arrays of randomly coupled dc-dimensional
ferromagnetic slabs perpendicular to each set of d� dc
directions. For dc > 2, these will have exponentially
many incongruent equilibrium states with log�N �‘�	 �
O�‘d�dc�. Although they themselves are not spin glasses
because both their couplings and spatially averaged spin
correlations exhibit long-range order, the slab models sug-
gest an analogous spin-glass phase.

The following fundamental property characterizes a pu-
tative spin-glass phase with infinitely many incongruent
states, which we call a montage phase: Repeated quenches
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from high temperature reveal clusters of spins with the
same relative orientation at long times after each quench.
The maturation metastate characterizes the set of such
clusters of spins with similar intracluster orientation to-
gether with the variation of relative cluster orientations
with wait time and from quench to quench.

To exhibit a montage phase, the system must be com-
posed of infinitely many infinite clusters of spins, each
separately controllable by boundary conditions. Different
states will be incongruent only if most spins are close to
cluster boundaries, thus (i) together the clusters occupy a
finite fraction of space and (ii) their boundary and full
dimensions are equal, �dc � dc. Clusters will be indepen-
dently controllable if (iii) in isolation each has a unique
pair of ground states, and (iv) they interact with each other
weakly enough. The number of distinguishable states will
grow with scale as N �‘� 
 exp�c‘d�dc�.

As with the slab models, conditions (iii) and (iv) hold
only if the minimal energy cost to invert the spins in a
typical scale-‘ section of an isolated cluster is much larger
than the typical interaction energy of this section with spins
in all other clusters [15]. If the stiffness scales as ‘�c and
the interactions as ‘�c , this requires

�c > �c: (1)

The stiffness exponent, �c, depends on cluster topology
and on the range and degree of frustration of the intra-
cluster couplings. For any model with nearest-neighbor or
sufficiently short-range interactions, dc > d� 1 so that
clusters span the system and

�c � dc � 1: (2)

More precisely, �c � djc, the cutting dimension of a cluster:
a minimal cut to sever a typical scale L section from the
rest of the cluster breaks of order Ld

j
c bonds. In general,

djc � dc � 1, the upper bound obtaining only if the clusters
are very well connected. The stiffness exponent will be
equal to djc only if bonds within a cluster are sufficiently
unfrustrated.

The interaction exponent �c depends on intercluster
couplings. For independently random couplings between
clusters, when short-range couplings dominate

�c � dc=2: (3)

Anticorrelations in the intercluster couplings that compen-
sate for correlations among intracluster couplings could
reduce �c.

The montage phase is stable to a small uniform (or
random) field provided that �c > dc=2. This follows by
analogy to random-field ferromagnets. In a magnetic field
the orientation of each cluster in a finite size system with
random boundary conditions will be determined by the
competition between the field and the intercluster energies.

Can this spin-glass phase with infinitely many states
exist in EA models? Can it exist in other short-range
4-2



PRL 96, 137204 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
7 APRIL 2006
Ising spin-glass models that are difficult to distinguish
from those with independently random couplings? We first
address the latter question by constructing examples.

If interactions within clusters decay as a power of sepa-
ration,

Jij �
Kij

ji� jjd��
(4)

with the Kij of order 1, cluster stiffness can be substantial
even for sparse clusters and is largest for unfrustrated
couplings within clusters. The energy to flip a typical
scale-L region of an isolated cluster from its ground state
orientation determines �c. Since flipping a typical spin in
an isolated unfrustrated cluster costs Ldc=Ld�� , summing
over pairs of spins yields

�c � 2dc � d� � (5)

for � < 2dc � d.
If the strength of intercluster interactions also decays

with power-law Eq. (4) but with independently random
signs, Kinter

ij � �� with equal probability, the intercluster
part of the interaction per spin will be finite as long as � >
�d=2. Then �c � dc=2 as in the short-range case. Thus
such a power-law model exhibits exponentially many in-
congruent states if 3dc=2> d� � > d=2, which is satisfi-
able if dc > d=3.

When can space-filling sets of fractal clusters exist?
They certainly can be constructed hierarchically. For ex-
ample, divide a d-dimensional (hyper)cube into 2qd

smaller cubes and label half of these A and half B.
Repeat this process inductively, subdividing each subcube
and appending additional labels A and B. Each string of A’s
and B’s will then label a fractal cluster of dimension dc �
d� 1=q. Furthermore, provided that d 
 3 and q is suffi-
ciently large, this can be done with some randomness in the
labeling but nevertheless so that each cluster is connected
and system spanning with boundary dimension �dc � dc
and cutting dimension djc > dc=2.

These hierarchically constructed clusters with nearest-
neighbor interactions that are unfrustrated within clusters
and random in sign between them are separately control-
lable. In this case, �c � djc > dc=2 � �c so that nearest-
neighbor couplings are sufficient to generate exponentially
many states in three (or more) dimensions. A set of signs
labels each state—one sign for every infinite string of A’s
and B’s [16].

More realistic models require space-filling sets of ap-
propriate fractal clusters that are statistically translation-
ally invariant. Do these exist? Following Newman and
Stein [17], one possibility is built from invasion percola-
tion clusters [18]. In dimensions d > 8, the number of
disjoint invasion clusters in a scale-‘ region is believed
to grow as a power of the scale. Similarly, loop-erased
random walks in d > 4 form sets of clusters with dc 
 2
that are collectively space filling [19]. With power-law
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interactions with special correlations, such clusters can
be separately controllable. With short-range interactions,
however, it is not known whether they will be, even in high
dimensions.

The special interactions in the above power-law example
are physically unrealistic. It seems unlikely that conven-
tional EA models exhibit separately controllable clusters
because of the apparent need for many weakly frustrated
sets. In real spin glasses, however, couplings are neither
symmetrically distributed nor independent of other nearby
couplings, and can be long range: e.g., RKKY (
1=r3).
Can clusters satisfying conditions (i)–(iv) arise spontane-
ously in systems with interactions that have translationally
invariant correlations among them? If so, how short ranged
can the interactions and correlations be? In particular, can
the correlations among the couplings come from an effec-
tive Boltzmann-like probability measure with only short-
range interactions in the effective Hamiltonian?
XY models with infinite uniaxial anisotropy suggest

some reason for optimism: they both illustrate a possible
mechanism for generating many states as well as provide
an example in which controllable fractal clusters arise
spontaneously. In dimensions greater than four, XY models
with random uniaxial anisotropy are believed to exhibit
ferromagnetic order [20]. When anisotropy is infinite, the
random axis at site i, âi, dictates the direction of the XY
spin, Si � �iâi with �i � �1. The resulting Hamiltonian
is equivalent to an Ising Hamiltonian with Jij / âi � âj. In
high dimensions, this model should exhibit ferromagnetic
order in the XY variables provided that the coordination
number is sufficiently high or correlation in random axis
directions is sufficient [21]. Consequently, the direction of
the spontaneous magnetization, �, should parametrize
an infinite family of states—with �iâi ��> 0 at most
sites—in a way that would be hidden in the Ising variables.

Although this may be a qualitatively distinct scenario for
many states, the number of which probably would grow
only as a power of length scale, some separately control-
lable fractal clusters do exist in such models. All spins in a
given finite box flip when fixed boundary conditions in-
ducing a spontaneous magnetization � are rotated by �.
There must be some much smaller change in boundary
conditions inducing a new state, �0, that is as close as
possible to �while still differing in the deep interior of the
box. Reversal of a connected fractal set of spins that
boundary conditions can control relates states � and �0.
But interactions between such sets are too strong for this
system to be in the montage phase. We expect that the
number of controllable fractal sets only grows as a power
of system size and that at most only a few of them can be
controlled simultaneously.

We now turn to experimentally observable consequences
of the montage phase scenario. Maps of local magnetiza-
tions (or other local properties) in the same region after
repeated quenches—to the same conditions—followed by
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waits for time tw give the spectrum of states in the matu-
ration metastate as well as their local structure. Soon after a
quench from high temperature, only nearby spins are cor-
related and there will be e‘

d=V distinct possible sets of spin
orientations. With increasing tw, V will increase, and the
number of observed maps will decrease. If there are only
two states, after a sufficiently long time such maps will
coincide in the observed region up to a global spin inver-
sion. But in the montage phase, even after extremely long
times, the number of distinct states observed in a scale-‘
region will grow with ‘ as

N �‘� 
 exp�‘��; (6)

presumably with� � d� dc. Though estimating the num-
ber of realizable states may be impracticable, experiments
should be able to determine whether �> 0.

Correlations between runs will carry information about
the structure of physical states. Long-distance correlations
between pairs of spins on the same cluster, hSiSji, averaged
over a long time (but short compared to tw) will be repro-
ducible from run to run, whereas the sign of correlations
between spins on different clusters will vary. So intraclus-
ter correlations will dominate the mean-square correlations
obtained by first averaging over many runs to obtain �xy �

hSxSyi and then averaging �2
xy over many pairs of spins

distance ‘ apart. These correlations decay as ‘��d�dc� up to
the length scale Lw�tw� on which equilibrium is estab-
lished. Decay is exponential for ‘� Lw. Spins in the
same cluster have �xy � O�1�.

There are subtleties in determining whether local equi-
librium has been reached on a sufficiently large scale Lw
relative to ‘. First, pairs of spins on neighboring clusters
may appear to be on the same cluster if these clusters tend
to have the same mutual orientations at early times.
Second, two sites on the same cluster may appear as if
they are on distinct clusters if they are linked primarily via
other spins that extend well beyond Lw. Both of these could
affect the inferred � as well as the decay of averaged
correlations.

We have proposed a scenario for a spin-glass phase with
exponentially many states that would have definite experi-
mental signatures. Such a phase can occur in spin-glass-
like models with correlations between couplings that are
special but would be hard to detect in a sample. Whether it
can occur in less artificial models is unclear. But the
scenario, if it does occur, gives rise to many questions.
What are appropriate measures for the necessary degree of
frustration in couplings? How do states change with tem-
perature and magnetic field? What are the natures of phase
transitions into such a phase?
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