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Validity of the Franck-Condon Principle in the Optical Spectroscopy:
Optical Conductivity of the Fröhlich Polaron
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The optical absorption of the Fröhlich polaron model is obtained by an approximation-free diagram-
matic Monte Carlo method and compared with two new approximate approaches that treat lattice
relaxation effects in different ways. We show that: (i) a strong coupling expansion, based on the
Franck-Condon principle, well describes the optical conductivity for large coupling strengths (�> 10);
(ii) a memory function formalism with phonon broadened levels reproduces the optical response for weak
coupling strengths (�< 6) taking the dynamic lattice relaxation into account. In the coupling regime
6<�< 10, the optical conductivity is a rapidly changing superposition of both Franck-Condon and
dynamic contributions.
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The Franck-Condon (FC) principle [1] and its validity
have been widely discussed in studies of optical transitions
in atoms, molecules [2], and solids [3]. For instance,
studies on the dynamics governing color center spectra,
Mössbauer spectra [4], and tunneling in polarizable media
[5] have established the limits of applicability of the FC
principle in solids. Generally, the FC principle means that
if only one of two coupled subsystems, e.g., an electronic
subsystem, is affected by an external perturbation, the
second subsystem, e.g., the lattice, is not fast enough to
follow the reconstruction of the electronic configuration. In
the opposite limit, when the perturbation is slow or even
static, the characteristic time of lattice interconfigurational
coupling �ic is short enough for the lattice to follow slow
changes of the electronic state dynamically. It is clear that
the justification for the FC principle is the short character-
istic time of the measurement process �mp � �ic, where
�mp is related to the energy gap between the initial and final
states �E through the uncertainty principle: �mp ’

@=��E�. Then the spectroscopic response considerably
depends on the value of the ratio �mp=�ic. For example,
in mixed valence systems, where the ionic valence fluc-
tuates between the configurations f5 and f6 with character-
istic time �ic�10�13 s, the spectra of fast and slow experi-
ments are dramatically different [6,7]. Photoemission ex-
periments with short characteristic times �mp � 10�16 s
(FC regime) reveal two lines, corresponding to f5 and f6

states. On the other hand, slow Mössbauer isomer shift
measurements with �mp � 10�9 s show a single broad
peak with a mean frequency between signals from pure
f5 and f6 shells. Finally, according to the paradigm of
measurement process time, magnetic neutron scattering
with �mp � �ic revealed both coherent lines, with all sub-
systems dynamically adjusted, and broad incoherent rem-
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nants of strongly damped excitation of f5 and f6 shells [8].
Actually, the meaning and the definition of the times �ic

and �mp vary with the system and with the measurement
process, although the spectroscopic response essentially
depends on whether one of the two interacting subsystems
is adjusted to the changes, induced by a measurement
probe, in the other subsystem.

To investigate the interplay between the measurement
process time �mp and the adjustment time �ic, we study in
this Letter the optical conductivity (OC) of a paradigmatic
model for electron-phonon (e-ph) interaction: the Fröhlich
model. Our aim is to investigate the OC from the weak to
the strong coupling regime (in this model, the e-ph cou-
pling strength is controlled by the dimensionless parameter
�) by three methods: (i) the diagrammatic Monte Carlo
(DMC) method [9,10], which gives numerically exact
answers in all e-ph coupling regimes; (ii) the memory
function formalism (MFF), which is able to take dynamical
lattice relaxation into account; and (iii) a strong coupling
expansion (SCE), which assumes the FC principle. In the
coupling regime 6<�< 10, we find that the OC spectrum
exhibits two features with different behavior. The higher-
frequency feature quickly decreases its spectral weight
with increasing coupling constant, whereas the lower-
frequency feature does the opposite. Besides, the numeri-
cally exact calculations of the OC (DMC) follow the
prediction of the extended MFF for �< 6, while they are
in fair agreement with SCE for �> 10. We conclude that
nonadiabaticity destroys the FC classification for �< 10,
while the FC principle rapidly regains its validity at large
coupling strengths due to the fast growth of the energy
separation between the initial and final states of the optical
transitions. Furthermore, both adiabatic FC and nonadia-
batic dynamical excitations coexist in the intermediate
e-ph coupling regime 6<�< 10. The crossover is con-
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trolled by the adjustment time �ic � @=D, set by the
typical nonadiabatic energy D (see text below).

In the Fröhlich polaron model [11], the electron ( ~r and ~p
are the position and momentum operators, respectively) is
scattered by phonons (ay~q denotes the creation operator

with wave number ~q) with e-ph interaction vertex Mq �

i@!0�Rp4��=q2V�1=2:

H�p2=2m�@!0

X
~q

ay~qa ~q�
X
~q

�Mqe
i ~q	 ~ra ~q�H:c:
: (1)

Here � is the dimensionless coupling constant, Rp �
�@=2m!0�

1=2, and V is the volume of the system. The
band mass of the electron m, Planck’s constant @, the
electron charge, and the dispersionless longitudinal optical
phonon frequency !0 are set below to unity. Although the
OC of this model attracted attention for years [12], there
exists no analytic approach giving a satisfactory descrip-
tion for all coupling regimes. The most successful ap-
proach is that based on the Feynman path integral tech-
nique [13] (DSG), where the OC is calculated starting from
the Feynman variational model (FVM) [14] for the polaron
and using the path integral response formalism [15].
Subsequently, the path integral approach was rewritten in
terms of the MFF [16]. These approaches are completely
successful at small e-ph couplings and are able to identify
some of the excitations at intermediate and strong e-ph
couplings without reproducing the broad structures present
in DMC data [9].

Extended memory function formalism.—In order to
solve the aforementioned problem regarding the descrip-
tion of the OC main peak linewidth at intermediate e-ph
couplings, we modified the DSG approach to include
additional dissipation processes, whose strength is fixed
by an exact sum rule. Within the MFF [17], the interaction
of the charge carriers with the free phonon oscillations can
be expressed in terms of the electron density-density cor-
relation function �� ~q; t� � �i��t�hexp�i ~q 	 ~r�t�
 exp��i ~q 	
~r�0�
i, which is evaluated in a direct way [16] using the
FVM, where the electron is coupled via a harmonic force to
a fictitious particle that simulates the phonon degrees of
freedom. Within this procedure, the electron density-
density correlation function takes the form: �m� ~q; t� �
�i��t� exp��iq2t=2M
 exp��q2R�1� e�ivt�=2M
, where
R � �M� 1�=v, and M (the total mass of electron and
fictitious particle) and v are determined variationally
within the path integral approach [14]. The associated
spectral function Am� ~q;!� � �2 Im�m� ~q; !� is a series
of � functions centered at q2=2M� nv (n is an integer).
Here q2=2M represents the energy of the center of mass of
an electron and a fictitious particle, and v is the energy gap
between the levels of the relative motion. To include dis-
sipation, we introduce here a finite lifetime for the states of
the relative motion, which can be considered as the result
of the residual e-ph interaction not included into the FVM.
To this end, in �m� ~q; t� we replace the factor exp��ivt

with �1� it=���v�, which leads to the replacement of �
13640
functions by Gamma functions with mean value and vari-
ance given, respectively, by q2=2M� nv and nv=�. The
parameter of dissipation � is not an adjustable parameter
but is determined by the third sum rule for A� ~q;!�, which
is additional to the first two that are already satisfied in the
DSG model without damping. As expected, � turns out to
be of the order of!�1

0 . If broadening of the oscillator levels
is neglected, �! 1, the DSG results [13,16] are recov-
ered. Within this latter approach [13,16], the polaron OC
was previously interpreted in terms of relaxed excited
states transitions, FC transitions, and transitions to scatter-
ing states [18,19].

Strong coupling expansion.—In the limit of strong cou-
pling strengths, the adiabatic lattice deformation is large
and the lattice kinetic energy can be regarded as a pertur-
bation. Within the Landau and Pekar (LP) [20] approach,
adiabatic lattice displacements are taken into account by a
unitary transformation and the Hamiltonian is divided into
two contributions H � H0 �HI: The first one describes
the electron oscillation in a self-consistent quadratic po-
tential with frequency !LP

1 � 4�2=9�, and the second one
represents the residual e-ph interaction. To get a quantita-
tive estimate for the characteristic frequency of the qua-
dratic potential, we improve the LP value considering the
effects of the translational invariance and the residual
interaction HI [21]. It turns out that the frequency !1 �
�4�2=9�� 3:8� differs from that of LP !LP

1 by a con-
stant shift 3.8. Then, starting from the Kubo formula,
taking into account all multiphonon processes and neglect-
ing recoil as well as correlation between the emission and
absorption of successive phonons in all orders of the per-
turbationHI, one arrives at the following expression for the
real part of the OC:

Re��!� � �0!
X1
n�0

e�!s

n!
�!s�

n��!�!2 � n�; (2)

resembling that expected for an exactly solvable indepen-
dent oscillators model [22]. Parameters, specific for the
Fröhlich polaron model, are!2 � !1 �!s,�0 � �=2!1,
and !s � ��!1=16��1=2. The parameter !1 is the FC
transition energy, and !s is the energy shift due to lattice
relaxation. Naturally, for large enough coupling strengths,
the envelope of the Poisson distribution (2) is well de-
scribed by the Gaussian

Re��!� � !
�0

�2�!s�
1=2

exp
�
�
�!�!1�

2

2!s

�
: (3)

Interpretation of the DMC results.—As expected, in the
weak coupling regime [Fig. 1(a)], both our extended MFF
with phonon broadening and the DSG [13] are in very good
agreement with the DMC data [9], showing significant
improvement with respect to the weak coupling perturba-
tion approach [23], which provides a good description of
the OC spectra only for very small values of � [24]. For
4 � � � 8, where DSG underestimates the peak width
[Figs. 1(b)–1(d)], the damping, introduced in the extended
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FIG. 1 (color online). Comparison of the optical conductivity calculated within the DMC method (circles), extended MFF (solid
line), and DSG [13,16] (dotted line), for four different values of �. The arrow indicates the lower-frequency feature in the DMC data.
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MFF approach, becomes crucial. Results of the extended
MFF are accurate for the peak energy and quite satisfactory
for the peak width [Figs. 1(b)–1(d)].

However, we observe a very interesting and unexpected
behavior in the coupling regime 6<�< 10. Two features
are present in the OC given by DMC: The position of the
lower-frequency peak (or shoulder) corresponds to the
predictions of the SCE [Eqs. (2) and (3)], while that for
the higher-frequency peak follows the extended MFF value
[Fig. 2(a)]. The higher-frequency feature rapidly decreases
its intensity with increasing �, and, at large values of �
[Figs. 2(b) and 2(c)], the OC given by DMC is in fair
agreement with the SCE results, which are strongly domi-
nated by the FC transitions. Finally, comparing the peak
and shoulder energies, obtained by DMC, with the peak
energies, given by MFF, and the FC transition energies
from the SCE [Fig. 2(d)], we conclude that as � increases
from 6 to 10 the spectral weights rapidly switch from the
dynamic regime, where the lattice follows the electron
motion, to the adiabatic regime dominated by FC transi-
tions, where the nuclei are frozen in their initial
configuration.

Breakdown of the FC picture.—In order to support this
scenario, we present an analytical estimation of the FC
breakdown based on the following arguments. The ap-
proximate adiabatic states �i;��Q� i�r; Q�, where i is the
electronic index and �i;��Q� is the eigenfunction of the
lattice connected with the electron wave function  i�r; Q�,
FIG. 2 (color online). (a)–(c) Comparison of the optical conductivit
(solid line), and the SCE (dashed line) for three different values of
obtained by DMC (circles and triangles, respectively) compared with
and with the energy of the peak obtained from the extended MFF
adiabatically connected transitions are shown as a function of �. W
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are not exact eigenstates of the system. These states are
mixed by nondiagonal matrix elements of the nonadiabatic
operator D and the exact eigenstates are linear combina-
tions of the adiabatic wave functions. Being interested in
the properties of transitions from the ground (G) state to an
excited (EX) state, whose energy corresponds to that of the
OC peak, we consider mixing of only these states and ex-
press the exact wave functions �G;EX�r; Q� as linear com-
binations [25,26] �G;EX � 	G;EX

g;� �g;� g � 	
G;EX
ex;�0 �ex;�0 ex

of the adiabatic ground state (�g;� g) and the adiabatic
excited state (�ex;�0 ex). The superposition coefficients are
determined from standard techniques [25,26] where the
nondiagonal matrix elements of the nonadiabatic operator
[25] are expressed in terms of matrix elements of the
kinetic energy operator M, the energy gap between the
excited and ground states �E � Eex � Eg, and the number
n� of phonons in the adiabatic state:

D� � M��E��1
����������������������������������
n� � 1=2� 1=2

q
�M2��E��2: (4)

The extent to which the lattice can follow a transition
between electronic states depends on the degree of mixing
between initial and final exact eigenstates through the
nonadiabatic interaction. If the states are strongly mixed,
the adiabatic classification has no sense, the FC transitions
have no place, and the lattice is adjusted to the change of
the electronic states during the transition. In the opposite
limit, the adiabatic approximation is valid and FC pro-
y calculated within the DMC method (circles), the extended MFF
�. (d) The energy of the lower- and higher-frequency features

the FC transition energy as calculated with the SCE (dashed line)
(solid line). In the inset, the weights of Franck-Condon and

e have used for 
 the value 1.3.
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cesses dominate. An estimate for the weight of the FC
component is

IFC � 1� 4j	EX
g;�	

G
ex;�0 j

2; (5)

which is equal to unity in the case of zero mixing and zero
in the case of maximal mixing. The weight of the adiabati-
cally connected (AC) transition IAC � 1� IFC is defined
accordingly. The nondiagonal matrix element M is propor-
tional to the square root of � with a coefficient 
 of the
order of unity. In the strong coupling regime, assuming that
�E � !1 and n� � �E (n� 
 1), one gets

IFC � �1� 4��mp=�ic�
2
�1; (6)

where �mp � 1=�E and �ic � 1=D. For
 of the order of 1,
one obtains a robust qualitative description of a rather fast
switch from AC- to FC-dominated transitions, when IFC

and IAC exchange half of their weights in the range of �
from 7 to 10 [see inset in Fig. 2(d)]. The physical reason for
such a quick change is the faster growth of the energy
separation �E� �2 compared to that of the matrix ele-
ment M� �1=2. This switch has nothing to do with the
self-trapping phenomenon where crossing and hybridiza-
tion of the ground state and an excited state occurs. The
AC-FC switch is a property of transitions between different
states and is related to the choice whether the lattice can or
cannot follow adiabatically the change of electronic state at
the transition.

Conclusions.—Comparing numerically exact data on
the optical conductivity, obtained by the diagrammatic
Monte Carlo method, with results from our extended mem-
ory function approach with phonon broadened levels,
which takes dynamic lattice relaxation into account, and
results of the strong coupling expansion, we found that the
Franck-Condon picture breaks down at �< 10. The break-
down of the Franck-Condon picture is caused by nonadia-
batic mixing of initial and final states, which destroys the
Franck-Condon classification scheme, and, hence, the ex-
citation processes with dynamic adjustment of the lattice
start to dominate. Finally, we find evidence for an inter-
mediate coupling regime 6<�< 10 where static and
dynamic lattice responses coexist.
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