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Statistics of Crumpled Paper
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A statistical study of crumpled paper is allowed by a minimal 1D model: a self-avoiding line bent at
sharp angles—in which the elastic energy resides—put in a confining potential. Many independent
equilibrium configurations are generated numerically and their properties are investigated. At small
confinement, the distribution of segment lengths is log-normal in agreement with previous predictions and
experiments. At high confinement, the system approaches a jammed state with a critical behavior, whereas
the length distribution follows a gamma law in which the parameter is predicted as a function of the
number of layers in the system.
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When a sheet of paper is crushed, the formation of a
network of ridges is observed. The process is irreversible as
energy accumulates in small regions leading to localized
plastic flow. Many fundamental questions arise. What is
the resistance of the crumpled ball to mechanical forces?
What are the mechanisms of the cascade of energy to small
scales? What is the probability distribution of lengths and
energies? The two latter are similar to the questions central
to hydrodynamic turbulence [1]. Early experimental stud-
ies [2–4] of crumpled paper balls focused on fractal prop-
erties such as the scaling of the radius with the size of the
flat sheet. The same property was used to characterize the
phases of microscopic membranes [5]—such as red blood
cells or graphitic oxide—for which thermal fluctuations
are relevant; these microscopic membranes raise a number
of numerical and theoretical difficulties, particularly when
self-avoidance is implemented [6]. Crumpled paper was
also viewed as a self-affine surface which roughness was
predicted and measured [7,8].

From elasticity theory [9], we know that thin elastic
plates have two modes of deformation: bending, which
involves curving the plate, and stretching, which changes
the distances on the plate. Bending is much less expensive
energetically than stretching so that pure bending defor-
mations should be always preferred. However, this is not
possible for a number of boundary conditions as shown in
[10]; this leads to the formation of a near-singular network
of lines (stretching ridges) and points (developable cones)
where the expensive stretching energy is localized. Even if
isolated ridges [11–13] or d cones [10,14–16] are rather
well characterized, the understanding of a full network is
far from being complete. Most experimental and theoreti-
cal studies tackled situations with a small number of
singularities [14,17–20] or a highly symmetric network
[21,22].

Our aim is to investigate numerically and theoretically
the statistics of crumpled paper. The strength of crumpled
sheets was measured and found to involve logarithmic
relaxation and a critical behavior close to a compact con-
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figuration [23]. Experiments also showed a broad distribu-
tion for the length of ridges, either indirectly—through
noise emission [24,25]—or directly—through geometri-
cal measurements [26]. This could be explained [27] in
terms of the hierarchical random breaking of ridges into
smaller ones. However, full numerical approaches [12,28–
30] are impeded by the complexity of the problem and did
not allow any statistics. Here we introduce a minimal 1D
model. We generate numerically a large number of equi-
librium configurations and study the resulting mechanical
and geometrical properties. In particular, we show a tran-
sition of the length distribution from log-normal to gamma
and we predict the parameter of the gamma distribution
using arguments analogous to those of mixing [31] and
spray formation [32].

A 2D crumpled sheet can be considered as a self-
avoiding polyhedron such that its energy is concentrated
at the edges (stretching ridges [13]) and vertices (d cones
[10]). The 1D equivalent that we introduce is a self-
avoiding closed line bent at sharp angles and in which
energy is concentrated at the vertices [Fig. 1(a)]. The
important feature here is that the position of the vertices
along the line is free. This model can be viewed either as a
representation of a cut through a crumpled ball of paper
[Fig. 1(b)] or as accounting for a crumpled sheet such that
all ridges are parallel and have the same length L. The state
of the system is defined by the coordinates �x0i; y

0
i� of the N

vertices. The total length of the line is conserved and set
to 1 by defining its energy as a function of the rescaled
coordinates �xi; yi� � �x0i; y

0
i�=l, l �

P
i��x

0
i�1 � x

0
i�

2 �

�y0i�1 � y
0
i�

2�1=2. In order to keep the features of 2D sheets,
the energy of each vertex is taken as the energy of a ridge
(an edge) bent with the same angle �i—defined so that
�i � 0 when the ridge is flat—and of length L (the value
of L is unimportant as it will be scaled out). Note that the
exact form of the ridge energy is unimportant—see dis-
cussion at the end. The line is put in a confining quadratic
potential of strength � (this form is better for the conver-
gence of the minimization but it does not affect the results,
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FIG. 2. Gyration radius of the line Rg as a function of the
strength of the confining potential �. Dotted (dashed) line:
average over 60 samples; continuous line: maximum (minimum)
value of Rg among all samples. N�80 and h�10�3. The differ-
ences between maximum and minimum are relatively large;
nevertheless, the standard deviation is only of the order of 510�4.

FIG. 1. (a) A compact equilibrium state of the 1D model. A
self-avoiding closed line bent at sharp angles �i with N seg-
ments of free lengths li is put in a confining quadratic potential
of strength �. Here the number of vertices is N � 80, the
thickness h � 10�3 (in units of total line length) and the con-
finement � � 106. (b) Picture of a cut through a crumpled ball of
paper, courtesy E. Couturier.
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see discussion at the end) . The physical constraint of self-
avoidance is implemented through a hard-core interaction
Ehc with infinite cost (a large number in the simulation)
between all pairs of segments, taking into account their
width h. The total energy reads

E � �itan7=3�i � �
I

r2�s�ds� Ehc: (1)

r�s� is the (rescaled) position vector as a function of the
curvilinear coordinate along the line. The unit of energy is
the bending modulus of the sheet multiplied by the factor
�L=h�1=3 that comes from the ridge energy [13]; the unit of
length is the total length of the line. The number of vertices
N and the thickness h—which appears only in the hard-
core interaction—are left as parameters whereas the con-
finement � is the control parameter. This system has a large
number of energy minima—which is favored by self-
avoidance—and our aim is to investigate the statistical
properties of the corresponding equilibrium configurations.

In the numerical minimization of the energy, Powell’s
algorithm [33] appeared as the most convenient to cope
13610
with the discontinuities of the hard-core interaction. This
algorithm is built upon a set of M directions (M being the
number of degrees of freedom) which are used to deter-
mine the directions for the successive 1D minimizations. In
order to obtain independent samples of the metastable
states of the system, the set of directions is chosen at
random. A better convergence was obtained by running
Powell’s algorithm 4 times and initializing the set of di-
rections before each run. Care was taken in optimizing
the evaluation of the hard-core interaction which is ex-
pensive (typically 90% of CPU time) because it involves
all pairs of segments. The results reported here correspond
to 4 values of N � 6 values of the thickness h (in the range
10�5– 10�2� � 150 samples �40 values of the confine-
ment 	105 minimizations with 100–200 degrees of
freedom.

We first measured the gyration radius Rg � hri averaged
over all samples as a function of the confinement � (e.g.,
Fig. 2 for N � 80). For a given sample, the gyration radius
depends on the choice of the sequence of applied confine-
ments � � �1; �2 . . . as in the experiments of [23]. This
can be ascribed to the large number of metastable states so
that the equilibrium configuration is selected by the history
of the system. The process of averaging over samples
almost suppresses this dependence. At low lambda, the
equilibrium state is a regular closed polyhedron so 2�Rg ’

1. When � reaches a threshold �c 	 1, the polyhedron
buckles and starts to fold. When �	 100, many contact
points have formed. Eventually Rg decreases slowly with �
to a minimal value Rj

g value such that the system is
jammed; we roughly find �Rg � R

j
g� 	 ���, with � �

0:3
 0:1. In this large � regime, we also found the total
energy E and the energy of the ridges Er to scale as E 	 ��,
Er 	 ��r , with � � 1
 0:05 and �r � 0:45
 0:05. The
value of � differs from the experimental [23] and numeri-
cal [30] value � � 0:54 for 2D sheets probably because of
the different dimensionality. The value of � ’ 1 shows that
the system is almost jammed as most of its energy comes
from the confining potential.
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We examined the correlations of the normals along the
line and we found them to be small except at high con-
finement or for zero thickness as some pairs of segments in
contact are exactly aligned. The probability distribution of
angles is symmetric with respect to zero and almost flat—
of course this probability vanishes for the maximal angles
� � 
�=2. In contrast, the distribution of distances l
between two consecutive vertices appeared to be broad.
We first checked that a threshold on length (up to 10h) or
angle (up to 10�)—i.e., suppressing from the statistics
small segments or vertices with a small angle—does not
affect the results.

At small confinement (1< � & 104 or 1> 2�Rg *

0:2), we observe sequential buckling events such that a
part of the line folds inward reducing the radius of the ball.
As predicted in [27] and found experimentally in [26], the
hierarchical splitting of a line leads to a log-normal distri-
bution [see Fig. 3(a)] with probability density

PLN�x � l=hli� �
1

�x
����
�
p exp

�
�

�
lnx
�
�
�
4

�
2
�
: (2)

This distribution is in agreement with our data (except for
sizes comparable to the thickness h), with a width � in the
range 1.0–1.8, comparable to the experimental values in
the range 1.2–1.4 [26]. Note that these experiments were
FIG. 3. The distribution of segments lengths P�l=hli� normal-
ized by the mean length (N � 60 and h � 10�3). (a) Low
confinement � � 900. The line is a best fit to a log-normal
distribution PLN [Eq. (2)] with width � � 1:59
 0:03. (b) High
confinement � � 106. The two lines are a best fit to a log-normal
distribution PLN [Eq. (2)] and to a gamma distribution P�

[Eq. (3)] with parameter � � 1:64
 0:03.
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performed at low confinement, 2�Rg * 0:6 in units of
sheet length.

In contrast, at high confinement (� * 104 or 2�Rg &

0:2), we found that a gamma distribution with density

P��x � l=hli� �
��x��

����x
exp���x� (3)

provides a better fit to the data than a log-normal distribu-
tion which fails for the most likely sizes [Fig. 3(b)] and for
the large l tail of the distribution which is exponential; the
log-normal distribution is however acceptable at inter-
mediate sizes [Fig. 3(b)]. This can be accounted for as
follows. The buckling process is no longer hierarchical
which at first sight should lead to an exponential distribu-
tion of lengths PE�x � l=hli� � exp��x� as the result of
the random splitting of a line [34]. However, at large
confinement, many self-contact points exist and segments
in contact tend to correlate. Let us define the number of
layers NL as the mean number of intersections of the
system with a straight half line starting from the center
of the potential (see Fig. 1), averaged over all directions
and all samples. For our parameters, NL varies from 1 at
low confinement to about 5 at the largest confinements
(except in the case h � 0: NL can be as large as 7.5). Note
that the number of layers is always smaller than the simple
estimate 1=�2�Rg� (in the range 1–8) which reflects the
‘‘roughness’’ of the ball. The system can be viewed as NL

interacting layers. If they were independent, the distribu-
tion of lengths would be exponential PE. Here the lengths
of segments in contact tend to average. So the length
should be the mean of NL exponential random variables,
i.e., a random variable with a Gamma distribution P� of
parameter � � NL. We measured the parameter from the
fit to the numerical distributions and we found that, as soon
as NL * 2:5,

� � aNL � b (4)

with a � 0:95
 0:1 and b � 2:05
 0:2. This in agree-
ment with our argument (Fig. 4) except that the effective
number of layer is smaller by 2 than NL, which simply
means that the system is slightly less correlated than if two
segments in contact had exactly the same length.

To summarize, we have introduced a simple 1D model
which allows a comprehensive statistical study of
crumpled paper. At low confinement, a hierarchy of buck-
ling events leads to a log-normal distribution of lengths in
agreement with the predictions of [27] and the experiments
of [26]. At high confinement, jamming is approached with
a critical behavior; self-avoidance leads to self-correlations
and to a gamma distribution of lengths solely determined
by the number of layers in the system (Fig. 4). This
increase in correlations probably accounts for the Hurst
exponent of compact paper balls [8] being larger than in
the loose balls of [26]. We also investigated the sensitivity
of our model to the form of the ridge energy (taking it as
�7=3 or changing the power 7=3 to 1.1 and 5) or the
3-3



FIG. 4. The parameter � of the Gamma distribution P�

[Eq. (3)] as a function of the number of layers NL [defined as
the mean number of intersections of a half-infinite straight line
with the system (see Fig. 1), averaged over all directions of the
line and all samples].
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confining potential (choosing a sharper r6 which is closer
to the confinement by a box). The exponents of the ap-
proach to jamming do not vary significantly within the
error bars; the statistical properties are surprisingly robust.
This robustness indicates that the system properties are
determined mostly by geometry. As a consequence, our
main point—the statistical properties change at large con-
finement because of stacking—should be insensitive to
any other physical details. For instance, including plastic
effects does not seem to be necessary, as the ridges stop
moving when jamming is approached. Obviously, our re-
sults call for experimental measurements of length distri-
butions at high confinement. Besides, our model can be
refined in two ways. First, the number of vertices could be
made free but one needs to find a criterion to add or
suppress vertices. Second, it could be extended to 2D,
which is more realistic but yields a more difficult numeri-
cal task: if the sheet is assumed to be a polyhedron, devel-
opability becomes a local constraint at each vertex whereas
self-avoidance becomes even more computationally
expensive.

This study was partially supported by the Ministère de la
Recherche-ACI Jeunes Chercheurs. We are grateful to
Mokhtar Adda-Bedia, Etienne Couturier, and Stéphane
Douady for discussions and to E. C. for Fig. 1(b).

Note added in proof.—S. Chaieb brought to our attention
Ref. [35], which opens the way to statistical studies based
on full numerical simulations. Gamma laws should provide
a good fit to the distributions of lengths obtained by the
authors.
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