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Nonlinear Evolution of Surface Morphology in InAs=AlAs Superlattices via Surface Diffusion
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Continuum simulations of self-organized lateral compositional modulation growth in InAs=AlAs short-
period superlattices on InP substrate are presented. The results of the simulations correspond quantita-
tively to the results of synchrotron x-ray diffraction experiments. The time evolution of the compositional
modulation during epitaxial growth can be explained only including a nonlinear dependence of the elastic
energy of the growing epitaxial layer on its thickness. From the fit of the experimental data to the growth
simulations we have determined the parameters of this nonlinear dependence. It was found that the
modulation amplitude does not depend on the values of the surface diffusion constants of particular
elements.
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The process of self-organization during the growth of
semiconductor epitaxial nanostructures is described using
two different models [1]. If there is a high density of
monolayer steps on the vicinal surface (the crystallo-
graphic miscut angle is larger than approximately 1�), a
step-bunching instability occurs [2], but if the density of
the monolayer steps is low, a self-organized growth of two-
dimensional or three-dimensional islands takes place. The
latter process occurs if the reduction of the strain energy
due to an elastic relaxation of internal stresses in the
islands outweighs the corresponding increase of the sur-
face energy [morphological Asaro-Tiller-Grinfeld (ATG)
instability [3–5] ].

The cited papers analyzed the self-organization process
in a linearized approach from which a critical wavelength
of the surface corrugation follows as a function of material
parameters. The exact nonlinear equation of the surface
evolution was studied by Yang and Srolovitz [6] and
Spencer and Meiron [7] for the case of a semi-infinite
substrate. It was found that the shape of an initially har-
monic surface waviness changes and a sequence of deep
cusps is created. This behavior was observed using scan-
ning electron microscopy [see, e.g., [8] ].

The physical properties of very thin layers (down to few
monolayers) differ from the properties of the bulk. This
difference leads to the creation of a stable two-dimensional
layer at the surface (wetting layer) in the first stage of the
Stranski-Krastanov growth mode. The occurrence of this
so-called ‘‘wetting effect’’ can be explained by a nonlinear
dependence of the elastic energy density on the layer
thickness [9,10]. Simulations showed that the wetting-
effect suppresses the growth of the cusps and subsequently
it leads to the formation of surface islands [11]. These
islands are unstable and coalesce [the Ostwald ripening
[12] ] [13]. However, numerical growth simulations indi-
cate that an anisotropy of the surface energy limits the
ripening process and causes the creation of a nearly homo-
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geneous array of islands [see Ref. [14], among others, and
the citations therein].

The evolution of the surface morphology of multilayers
has been studied only in a linearized approach so far
[15,16]. From this approach, an unlimited growth of the
modulation amplitude follows, which does not correspond
to the experimentally observed stabilization of the modu-
lation amplitude during the growth. The aim of this Letter
is to describe this stabilizing effect using the exact non-
linear equation of growth including the wetting effect. We
have simulated the time evolution of the spontaneous
lateral modulation of layer thicknesses in short-period
semiconductor superlattices and we have found that the
evolution of the modulation amplitude quantitatively cor-
responds to the results obtained by x-ray scattering
measurements.

We have studied a series of InAs=AlAs superlattices
grown by molecular beam epitaxy on InP (001) substrates.
The substrate was covered by a 100 nm thick InxAl1�xAs
buffer layer with the same chemical composition as the
average composition of the InAs=AlAs stack. The nominal
thicknesses of both InAs and AlAs layers were 1.9 mono-
layers (mL) in all samples. The samples were prepared in a
series with 2, 5, 10, and 20 superlattice periods. The growth
temperature was 530 �C and the growth rate 0:5 mL=s. The
details of the growth can be found elsewhere [17].

X-ray grazing-incidence diffraction (GID) measure-
ments were carried out at beam line ID01 at European
Synchrotron Radiation Facility (ESRF) in Grenoble using
the x-ray wavelength 1.54 Å. We have measured the dif-
fusely scattered intensity distributions around 400 and 040
reciprocal lattice points in the qxqy plane parallel to the
sample surface. Two first-order lateral satellite maxima
were observed at samples with 5 and more superlattice
periods. An example of this experimental intensity map is
plotted in Fig. 1. The distance of the lateral satellites from
the specular crystal-truncation rod at qx;y � 0 is inversely
2-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.136102


0 5 10 15 20
0

0.2

0.4

0.6

0.8

number of periods

ε 1 (
ar

b.
 u

ni
ts

)

FIG. 2. The dependence of "1 on the number of superlattice
periods; this dependence describes the time evolution of the
modulation during the growth. The circles with error bars are
the experimental points obtained from the x-ray data; the full
line represents the simulations. The dashed line is the evolution
of "1 calculated in the linearized case [15,16].
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FIG. 1. Diffusely scattered intensity measured around the
400 reciprocal lattice point on the sample with 20 superlattice
periods. The contours are logarithmic; four contours correspond
to one decade. The diffraction vector is along the qx axis. The
arrows show lateral intensity maxima mentioned in the text.
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proportional to the lateral modulation period; the period
remains constant for all samples and was determined to be
�267� 15� �A. From the position of the satellite maxima in
the qxqy plane we determined the modulation directions
close to �310� and ��130�. The amplitudes of the satellites
increase with the growing number of the superlattice peri-
ods, while their widths decrease. This indicates that during
the epitaxial growth the periodicity of the lateral modula-
tion improves and its amplitude increases. The details of
the experimental setup and results are described in the
previous paper [18], where we have determined the time
dependence of the modulation amplitude from the x-ray
data.

The diffuse scattered intensity can be calculated using
the formula

Idiff�q� � A
��������
Z
d3r�h�r�e�ih	u�r�

��������
2
; (1)

where A is a constant, �h is the crystal polarizability, h is
the diffraction vector, and u is the displacement vector.
Using the procedure described in the previous work [18],
we have extracted the correlation function "�x� x0� �
h�c�x� � c0��c�x

0� � c0�i, from the measured data, where
c�x� is the local InAs concentration averaged along the
growth direction z and c0 is the average InAs concentra-
tion. The dependence of the first coefficient "1 of the
Fourier series of " obtained from the experimental data is
plotted in Fig. 2; this coefficient corresponds to the modu-
lation amplitude.

The evolution of the surface described by the function
z � h�x; t� is driven by the surface diffusion and it can be
described by the equation [19]
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where Ds the surface diffusion coefficient, � is number of
atoms per unit area on the surface, � is atomic volume, kB
is the Boltzmann constant, T is the temperature, � is the
chemical potential on the surface, F is the deposition rate,
and � is the deposition and diffusion random noise. The
model is assumed to be independent on the third coordinate
y and hence only one-dimensional surface modulation in a
two-dimensional (x; z) space can be simulated. This ap-
proach is well justified for quantum wires or for strongly
elongated quantum dots. For the quantum dots of a more
symmetric shape this simulation can give limited informa-
tion only. This effect is discussed below.

The chemical potential � can be expressed as [20]
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(3)

where �0 is the chemical potential of an ideally flat un-
strained surface, � is the surface tension, � is the surface
curvature, Cjklm are the components of the elastic tensor of
the material, and �jk is the strain tensor. The function

f�0�el �h� describes a dependence of the elastic energy density
on the layer thickness h giving rise to a wetting effect. For a
Ge layer on Si, this function was approximated by the
exponential function [20]

f�0�el �h� � 0:05� ES�1� exp��h=hml��; (4)

where ES is strain energy density in thick flat layer and hml

is thickness of one monolayer. We have used an analogous
formula

f�0�el �h� � EW�1� exp��h=hW��; (5)

where EW and hW are parameters depending on the lattice
misfit and elastic constants of the layer.
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The strain energy was calculated by a direct solution of
the linear elasticity equations using the boundary integral
method. The method used is a multiple layer extension of
the method in Ref. [6] for an isotropic continuum with
periodic boundary conditions. The boundary conditions on
the internal interfaces are described in Ref. [21]; the nearly
singular integrals were calculated using method developed
in Ref. [22].

The simulations have been performed with known ma-
terial parameters. The surface energy �, calculated from
the first principles, was taken from Ref. [23] as 1 Jm�2.
The resulting structure of the interfaces inside the super-
lattice is shown in Fig. 3. From the simulations, the modu-
lation period of 300 Å follows, which is in a reasonable
agreement with the observed value Lexp � �267� 15� �A.
It should be noted that the simulated modulation period is
affected by the size of the simulated region, since there can
be only an integer number of the waves in the simulated
system of a given size. To eliminate the influence of the
system size we have simulated the growth of several sys-
tems of sizes 150, 225, 300, and 400 nm. For various
system sizes, the modulation periods were always obtained
in the interval �300� 20� �A depending on the particular
system size. The modulation amplitude is not affected by
the system size.

During the growth of first layers in the stack the modu-
lation amplitude grows exponentially as predicted by the
linearized theory [15,16]. In the further growth stage,
however, the rate of the growth of the modulation ampli-
tude decreases (see Fig. 2, where the experimentally ob-
tained values of the first Fourier coefficient "1 of " are
compared with the simulation results).

The simulations show a good agreement with the
experimental results in spite of the simplified one-
dimensional model of the surface used. Transmission elec-
tron microscopy (TEM) on similar samples [17] revealed
that the modulation is nearly one-dimensional indeed,
resulting in a quasiperiodic sequence of quantum wires;
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FIG. 3. Simulated interface profiles in a InAs=AlAs superlat-
tice. Thick dashed lines denote the interfaces between
InAs (under) and AlAs (above). Thin solid lines denote the
interfaces between AlAs and InAs.
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this fact explains why the one-dimensional model is suffi-
cient for the simulation of the modulation kinetics. The
TEM observations also demonstrated that if the average
lattice parameter of the (relaxed) multilayer is larger than
that of the InP buffer underneath (the actual multilayer
structure is laterally compressed), the modulation direction
is close to �100�; if the multilayer is laterally deformed in
tension, the modulation direction is close to the crystallo-
graphic directions �310� and �130�. Of course, the one-
dimensional model used here cannot predict the modula-
tion direction. We ascribe the dependence of the modula-
tion direction on the deformation sign to the anisotropic
surface tension and anisotropy in elastic constants [24].
The degree of anisotropy of the surface tension is also
affected by the actual strain in the layer [25] and this fact
could therefore also explain different modulation direc-
tions in the case of a tensile and compressive deformation
of the multilayer.

The continuum simulation also allows for the formation
of nonphysical layers, the thickness of which are fractional
numbers of monolayers. However, our results based on a
continuum approximation are qualitatively similar to the
those obtained using an atomistic model and a monolayer
step corrugation [2].

The observed and predicted modulation periods roughly
correspond to the period given by the linearized theory
[15,16], which prediction is L � 200 �A. According to the
Ref. [26] the surface diffusion of In is about 50 times faster
than Al, although an exact value of the surface diffusivity
of In is not known. In [27] the surface diffusion constant of
Al at 530 �C was found to be 1:5� 10�7 cm2 s�1. The
deposition flux of As atoms is higher than the flux of In and
Al atoms at usual MBE conditions [28]; therefore, only
diffusivities of Al and In atoms play role.

On the other hand, our simulations have shown that the
values of the diffusion constants have nearly no influence
on the modulation amplitude, since the diffusion process is
sufficiently quick and the growing surface is nearly in an
equilibrium state. The diffusion rate, however, affects the
modulation period. In the case of very slow diffusion (of
the order of 10�10 cm2 s�1 for Al), the growth of the larger
ripples at the expense of smaller ones (the Ostwald ripen-
ing) does not take place and the modulation remains con-
stant during the growth of the whole superlattice stack. If
the diffusion is very fast (of the order of 10�7 cm2 s�1 for
Al), the Ostwald ripening takes place during the growth of
the first layer already, which leads to the creation of a
smaller amount of larger, more distant dots, separated by
larger flat areas of a thin wetting layer. The nucleation of
the ripples on the subsequent interfaces is affected by the
local distribution of lateral strains originated from the large
buried ripples. Because of the elastic energy, this distribu-
tion gives rise to local minima of the chemical potential at
the rims of the buried ripples (two local minima for each
ripple) so that the number of the ripples is duplicated. After
the deposition of several periods, the ripples cover the
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whole interface again and the flat areas between the ripples
disappear. The resulting modulation period is approaching
the period obtained for a slow diffusion again.

In our simulations, we have achieved a good correspon-
dence of both the modulation period and the time depen-
dence of the modulation amplitude for any value of the
diffusion constant of Al between 10�10 and 10�7 cm2 s�1.

The resulting interface morphology is substantially af-
fected by the wetting effect, i.e., by a nonlinear dependence
of the volume density of the elastic energy on the layer
thickness. We have approximated this dependence by
Eq. (5). The best correspondence of the measured and
simulated modulation amplitudes was obtained for the
values EW � 0:15� ES and hW � 0:6� hml. We have
also estimated these values by means of an atomistic
simulation of the elastic energy density using the
valence-field force method and the Keating model [29].
In these simulations we have neglected the surface relaxa-
tion and reconstruction and we have obtained the depen-
dence of the density of the elastic energy on the thickness
of a layer with a flat (001) surface. From the fit of this
dependence with exponential formula in Eq. (5) we have
obtained EW � 0:10� ES and hW � 0:8� hml, which
very well corresponds to the values above.

The parameters EW and hW affect the modulation am-
plitude and they have no influence on the modulation
period. In the first stage of the multilayer growth the
modulation amplitude rapidly increases; this increase is
slowed down after the growth of about 10 superlattice
periods. The parameter hW affects mainly the rate of the
initial amplitude growth; this rate increases with decreas-
ing hW . The parameter EW determines the slowing-down
process: for larger values of EW the slowdown of the
amplitude growth is observed earlier than for smaller EW .

In conclusion, we have simulated the multilayer growth
using a nonlinear continuum model. The simulation results
agree very well with experimental data obtained by x-ray
scattering. From the simulations performed for various
values of material parameters we have found that the
wetting effect (the nonlinear dependence of the elastic
energy density on the layer thickness) has a crucial influ-
ence on the resulting interface morphology; from the fit of
the experimental data with the simulations we have deter-
mined the parameters of this nonlinear dependence and we
have compared these values with atomistic simulations.
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