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Local Electromigration Model for Crystal Surfaces
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The dynamics of crystal surfaces in the presence of electromigration is analyzed. From a phase field
model with a migration force which depends on the local geometry, a step model with additional
contributions is derived in the kinetic boundary conditions. These contributions trigger various surface
instabilities, such as step meandering, bunching, and pairing on vicinal surfaces. Experiments are
discussed.
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FIG. 1. Phase field model with a nonconstant migration force.
The step region of widthW is hatched. For the sake of simplicity,
a 1D cross section is shown, but the model in the text is 2D.
Notations: c is the mobile atom concentration, � is the phase
field, D is the local diffusion constant, and jMj is the local
amplitude of the migration force. Using suitable asymptotics,
one obtains a step model as shown in the lower part of the figure,
where the concentration may be discontinuous at the step (c� �

c�), and � is now a Heaviside function which indicates the step
position.
In the presence of an electric current, mobile atoms
experience a diffusion bias, which is called electromigra-
tion. Surface electromigration is known as a major source
of rupture of microstructures and is also an interesting tool
for spontaneous nanostructure formation. In the past
15 years, kinetic instabilities at the micrometer or nano-
meter scales, such as step bunching [1], meandering [2],
and pairing [3] on stepped surfaces under electromigration,
have been the focus of a large body of literature. In the
usual model for step motion under electromigration [4],
mobile atoms between steps experience a constant drift
force, while kinetic boundary conditions at steps are not
affected by migration. It was suggested in Refs. [5,6] that
migration could lead to additional terms in step kinetic
boundary conditions, which may have some consequences
on the dynamics of monolayer islands or vicinal surfaces.
Nevertheless, a microscopic explanation was lacking.

From the work of Rous and Bly [7], it is known that, in
the vicinity of steps, the backscattering of carriers strongly
alters the migration force. In the present Letter, it is shown
that the boundary conditions used previously in the litera-
ture should be modified to account for the variations of the
migration force in the step region. To do so, a step model is
derived from a phase field model with a nonconstant
migration force. The analysis of this step model reveals
that the new contributions may produce all the instabilities
known so far on vicinal surfaces. Finally, the relevance of
these results for experimental observations on various sur-
faces is discussed.

Let us start with a microscopic description in terms of a
phase field model [8]. The surface is described by two
fields � and c, which, respectively, represent the normal-
ized height of the surface and the local concentration of
mobile atoms. More sophisticated models, which may
account for arbitrary kinetics at the steps, are not consid-
ered here for the sake of simplicity [8]. The dynamics of
the phase field� is such that� relaxes to a step and terrace
structure. Terraces are wide regions where � is constant,
and steps have a typical width W, as shown in Fig. 1. The
motion of the steps is driven by the departure from equi-
librium in the step region, measured by the concentration
variations: �c� ceq�, where ceq is the equilibrium concen-
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tration. The dynamics of � is a relaxation with time scale
��:

��@t� � �@�f�W2r2�� ��c� ceq�@�g: (1)

The free energy density f is a periodic function of � with
minima for the values of � corresponding to the terraces.
The coupling function g is also a function of �, with
@�g � 0 in the step regions, @�g � 0 on terraces, and
g� � g� � 1, where � indicates the lower or the upper
side of the step, respectively. The constant � controls the
strength of the coupling between mobile atoms and steps.

A global external force is present, related to the electric
current in the bulk of the crystal. This current induces a
local surface migration force M on mobile atoms. The
1-1 © 2006 The American Physical Society
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force M depends on the surface local geometry via the
phase field �. The resulting mass flux, oriented in the
direction ne �M=jMj, reads:

je � Dc
M
kBT

�
Dc
�

ne; (2)

where D is the local �-dependent diffusion constant, and
� � kBT=jMj is a �-dependent length scale which char-
acterizes the amplitude of the force. Far from the steps, the
diffusion constant and migration length are constant: D!
D0 and �! �0. Local mass conservation reads:

@tc � r
�
D
�
rc�

c
�

ne

��
� F�

c
�
� @th; (3)

where h is the solid concentration, i.e., the number of solid
atoms per unit area above a plane of arbitrary height
parallel to the terraces. The variations of h are analogous
to that of �, and the jump of h across a step is constant
h� � h� � 1=�, where � is the atomic area. Following
Refs. [8,9], we use a thermodynamically consistent for-
mulation, with g � h�.

Writing Eq. (3), we have discarded the tensorial cou-
pling between the geometrical anisotropy of the step and
the migration direction (i.e., the orientation of ne), which
could change the local migration direction in the vicinity of
a step. We shall rather focus on another effect which is, in
my opinion, the most important one: the variation of the
migration force amplitude in the step region. The phase
field model presented here also neglects the dependence of
the migration force on the adatom density. Indeed, this
effect should occur at high densities only [10], while the
adatom densities which are relevant for the experiments
mentioned below are small.

We now derive a step model from the phase field model
(1) and (3). When step kinetics is fast, one may perform the
thin interface asymptotics reported in Refs. [8,9]. We shall
assume that steps are slowly driven out of equilibrium, so
that the step width W is much smaller than the smallest
cutoff length ‘c related to the diffusion field on terraces,
defining a small parameter ��W=‘c. The length ‘c may,
for example, be the typical distance to other steps, the
migration length �, or the desorption length �D��1=2. We
also consider a finite coupling constant �� 1 and a small
departure from equilibrium at the steps �c� ceq� � �. The
latter condition indicates that step kinetics is fast enough to
keep the concentration in the step region close to ceq.
Finally, the relaxation of � must be fast, so that the
dynamics does not affect the step and terrace structure.
We therefore need �� � �2.

Different expansions of c and � are performed in the
step region �i� and far from the steps �o�. Defining an inner
variable � � z=�, where z is a coordinate along the normal
to the step, and the arclength s along the step, we have

c�i���;s��
X1
n�0

�nc�i�n ��;s�; c�o��r��
X1
n�0

�nc�o�n �r�; (4)
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where r � �x; y�. A similar expansion is used for �.
Finally, the �i� and �o� expansions of c and � must be
matched at the border between the two regions.

To 0th order in the expansion, c�i�0 � c�o�0 � ceq.
Moreover, �0 is an arbitrary immobile step and terrace
structure (with steps far from each other).

The dynamics is obtained to first order. The concentra-
tion of atoms far from the steps obeys Eq. (3), with D!
D0, and without the exchange term @th.

Global mass conservation at the step reads:

Vn
D0
���1 � c� � c�� � n 	 rc� � n 	 rc� �

c� � c�
�s

;

(5)

with 1=�s � �n 	 ne�=�0. Equation (5) is obtained to first
order without the terms �c� � c��=�s and �c� �
c��Vn=D, which are higher order contributions. Two addi-
tional equations are obtained to first order. They are inter-
preted as the step kinetic boundary conditions:

D0n 	rc��
D0c�
�s
����

�
c��~ceq��

Vn
�
�Q�

ceq

�s

�
;

(6)

where ~ceq � ceq�1� �	�. These expressions involve some
coefficients, the definitions of which follow [11]:

�ceq�21=2W
�

Z
d��f�fmin�

1=2;

��21=2
��
W

Z
d��f�fmin�

1=2

�
Z
dz�g�g���g��g�D�1;

��1
� ��

Z
dz�g
�g��D

�1�D�1
0 �;

Q���
Z
dz�g
�g��1��0=��;

(7)

where fmin is the value of f at its minima. Integrals are
taken through one step in the normal direction z. The
constants g� are the values of g on both sides of the steps.

If we ignore the terms proportional to Q�, Eq. (6) is
equivalent to the general linear kinetic boundary condi-
tion of steps when step transparency and attachment-
detachment on both sides of the steps are taken into ac-
count [8]. Using linearized nonequilibrium thermodynam-
ics, Eq. (6) could have been stated directly, with the new
terms proportional to Q� [12]. Hence, Eq. (6) is more
general than the specific limit of the specific phase field
model derived above. The relevance of our derivation from
a phase field model comes from the explicit link between
the terms of Eq. (6) and microscopic quantities. Indeed,
from Eq. (7), Q� or Q� account for the variations of jMj
on the lower or the upper side of the step, respectively.
Moreover, Q� > 0 or Q� < 0, respectively, account for a
decrease or an increase of jMj in the step region.

Instead of analyzing the consequences of the full bound-
ary conditions (6), we shall now focus on a simplified limit.
1-2
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We define:

Q � Q� �Q� �
Z
dz�1� �0=��: (8)

In order to grasp some of the main consequences of the new
contributions, we shall focus on a simplified limit where
Q� � Q� � Q=2. This may be obtained in the phase field
model with an antisymmetric g and a symmetric variation
of �. This assumption amounts to considering that the main
effect of the force variation in the step region is an average
increase or decrease of the amplitude of the force, respec-
tively, leading to a negative or positiveQ. We also focus on
a specific limit for step kinetics. We define:

d0 � D0��
�1
� � �

�1
� � �

Z
dz�D0=D� 1�: (9)

Comparing the last term in the left-hand side with the last
term in the right-hand side of Eq. (6), we infer that Q� will
be relevant when it is of the same order of magnitude as
D0=��. We therefore take the limit where �� is large,
which implies d0 small. We also take D to be symmetric
across the step so that �� � ��.

With these assumptions—symmetric 1=� and D and
fast kinetics—the boundary conditions (6) read:

c� � ~ceq 
Q
�ceq=2�s � �Vn=�; (10)

where

Q� � Q� d0 �
Z
dz
�
D0

D
�
�0

�

�
: (11)

Equations (10) account for transparent steps when � is
large and nontransparent steps with fast attachment-
detachment kinetics when � is small. The expression
(11) indicates in a remarkably compact formulation that
a single quantity Q� accounts at the same time for the
variations of the migration force and for the variations of
the diffusion constant in the step region. Therefore, in the
present limit, one cannot distinguish between the relative
contributions of diffusion and migration force variations
from the analysis of step dynamics.
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We shall now see how all known elementary instabilities
of vicinal surfaces are obtained from the model with
kinetic boundary conditions (10). Let us analyze the stabil-
ity of an array of initially straight and parallel steps sepa-
rated by the same distance ‘. We assume that the direction
of migration is orthogonal to the average step direction,
defined as the x axis. We also consider the conserved
regime where F � 0 and 1=�! 0. The mth step is per-
turbed by a small deviation


m�x; t� � 
!� exp�i!t� im�� iqx; (12)

where � and q are, respectively, the phase shift from step
to step and the wave vector along the step. An instability is
indicated by a positive<e�i!. Substituting Eq. (12) in the
model equations, one finds the general expression of i! as
a function of � and q.

In the case of in phase meandering (� � 0), one finds in
the long wavelength and weak electromigration limit
[�q‘�2 � ‘=�0 � 1]:

i! � �ceqD
�
Q�

�0
q2 � �‘q4

�
: (13)

Therefore, the train of steps is unstable when Q�=� > 0,
and the most unstable wavelength is �m �
2��2�0�‘=Q��1=2.

In order to analyze step bunching, we shall introduce a
repulsion between steps. If this interaction is of elastic or
entropic origin, its free energy per unit step length is A=‘2

[13]. The local equilibrium concentration is then

~c eq � ceq�1� �	� 2A�‘�3
� � ‘

�3
� ��; (14)

where we have considered the interaction between neigh-
boring steps only, and A � �A=kBT. For the sake of
simplicity, we analyze the stability of the mode q � 0,
which accounts for the bunching of straight steps. In the
limit of weak electromigration, the linear stability analysis
leads to:
i!
�Dceq

�
�2Q�=�0‘2��1�cos�����12A=‘5��1�cos���2

1�2�1�cos����D�=‘
: (15)
Once again, an instability appears if Q�=� > 0. The stabil-
ity analysis thus indicates that a vicinal surface is simulta-
neously destabilized with respect to bunching and mean-
dering for a downhill flux when migration or diffusion is
weaker in the step region and for an uphill migration when
migration or diffusion is enhanced in the vicinity of the
steps.

Let us now discuss some of the experimental results of
the literature. On Si(111), atoms drift along the current
direction [14]. Three high temperatures regimes, denoted I,
II, and III, were found [1,15]. In regimes I and III, bunch-
ing is observed for a downhill current during both growth
and sublimation [15]. In regime II, bunching is observed
during growth for a downhill current and during sublima-
tion for an uphill current [15]. From the step model without
the Q contribution, it was concluded that regimes I and III
correspond to opaque steps (�, ��, and �� small), and
regime II corresponds to fast step kinetics (�� and ��
large) [15,16].

In the case of opaque steps, the Q terms are probably a
small contribution, unless an unexpected dramatic increase
or change of sign of migration is observed in the step re-
gion. In the case of fast kinetics, the Q terms become im-
portant. From the study of step pairing [3], it was con-
cluded that � is large, which means that steps are transpar-
ent. In Ref. [3], the occurrence of pairing was related to a
small negative kinetic length d0��0:13 �A. In the present
analysis, this result generalizes toQ� �Q�d0��0:13 �A.
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We therefore obtain an alternative explanation for the pair-
ing based onQ< 0, i.e., on a stronger migration in the step
regions, and jQj � jd0j. Quantitatively, we find Q �
�0:13 �A. This may, for example, account for an increase
of 1% of the migration force in a step region of width 13 Å.

Step meandering is also observed during sublimation
with downhill migration in regime II [2]. If Q< 0, as
suggested above, then Q rather favors the stabilization of
the meander for a downhill flux. Meandering therefore
requires an extended study, which would also account for
the sublimation rate and which is beyond the scope of the
present Letter [17].

Another system of interest is Si(100), which undergoes a
dimer-row reconstruction, rotated �=2 from one layer to
the next one. We here assume that dimer rows are perpen-
dicular ? or parallel k to steps and that the current is
perpendicular to the average step orientation. The differ-
ence of the diffusion constant (D?, Dk) perpendicularly to
the step leads to pairing [4] and subsequent bunching of
pairs [18] for both directions of the electric current. The
crucial quantity is the migration mass flux j� ceqD=�.
Therefore, the phenomena that are attributed to a variation
of D can also be the result of a variation of �. More
precisely, stronger migration along dimer rows reproduces
pairing and bunching of pairs for both directions of the
current, as observed in experiments [19]. Furthermore,
following Ref. [20], one could consider pairs as effective
steps with an effective value ofQ, coming from the internal
variations of D and �. This would help to analyze the pair
bunching dynamics.

We also expect the effect presented above to be relevant
for the case of metals. Indeed, from microscopic models on
metallic surfaces [7], strong variations of the migration
force in the vicinity of the steps were found. Rous and Bly
[7] indicate a decrease up to �50% in a region �20 �A for
Na. Using Eq. (8) with an approximate integration of the
results of Ref. [7], we find Q � 10 �A. This contribution is
2 orders of magnitude larger than that found above for
Si(111) and should therefore have drastic consequences on
the dynamics of metal surfaces under electromigration.
Experiments on Au surfaces [21] indicate that, in the
presence of an electric current, the Ehrlich-Schwoebel
(ES) effect [22] (a decrease of interlayer mass transport
related to a low value of ��) disappears, and a significant
increase of interlayer mass transport is observed. The dis-
appearance of the ES effect is probably caused by the
increase of the temperature due to the joule heating effect.
Indeed, it was shown in Ref. [23] that the ES effect
disappears at high temperature on Au. Therefore, kinetics
is fast, and the tendency to bunching indicated in Ref. [21]
could be caused by the nonconstant migration scenario
presented above.

Electromigration also leads to step bunching for some
other metal surfaces [24] and on GaN(0001) during epi-
taxial growth [25]. But quantitative microscopic informa-
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tion is lacking for a precise discussion of the nonconstant
migration force scenario in these systems.

In conclusion, variations of the migration force in the
vicinity of the steps may lead to step bunching, meander-
ing, or pairing during electromigration. This mechanism
defines a novel scenario for surface instabilities, which
may compete or combine with the other destabilizing
mechanisms analyzed in the literature. Finally, the rele-
vance of these results for some semiconductor and metal
surfaces was discussed.
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165901 (2004).
[4] S. Stoyanov, Jpn. J. Appl. Phys. 30, 1 (1991).
[5] O. Pierre-Louis and T. L. Einstein, Phys. Rev. B 62, 13 697

(2000).
[6] N. Sugo, J. Kimpara, N.-J. Wu, H. Yasunaga, and

A. Natori, Jpn. J. Appl. Phys. 39, 4412 (2000).
[7] P. J. Rous and D. N. Bly, Phys. Rev. B 62, 8478 (2000).
[8] O. Pierre-Louis, Phys. Rev. E 68, 021604 (2003).
[9] A. Karma and W.-J. Rappel, Phys. Rev. E 57, 4323 (1998).

[10] H. Ishida, Phys. Rev. B 49, 14 610 (1994).
[11] We here ignore the terms related to the interface definition

mentioned in Ref. [8], which are not relevant for our
purposes.

[12] Indeed, the mass flux [left-hand side of Eq. (6)] must be
proportional to a linear combination of the 3 thermody-
namic forces, which are proportional to the departure from
equilibrium on both sides of the step �c� � ceq� and �c� �
ceq�, and the amplitude of the migration force far from the
step 1=�0. Then we follow Ref. [8] and perform a linear
combination of the boundary conditions to cancel the
cross concentration terms, which introduces the term �Vn.

[13] P. Nozières, in Solids Far from Equilibrium, edited by
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