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Centrifugal Forces Alter Streamline Topology and Greatly Enhance the Rate of Heat
and Mass Transfer from Neutrally Buoyant Particles to a Shear Flow
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Centrifugal forces break the degenerate closed-streamline configuration that occurs in simple shear flow
past a neutrally buoyant torque-free particle in the inertialess limit. The broken symmetry allows heat or
mass to be convected away in an efficient manner in sharp contrast to the inertialess diffusion-limited
scenario. The dimensionless transfer rate, characterized by the Nusselt number, is found to be Nu �
0:33�Re Pe�1=3 �O�1� for small but finite Re when Re Pe� 1. Here, the particle Reynolds number (Re)
is a dimensionless measure of the inertial forces, while the Peclet number (Pe) measures the relative
importance of the convective and the diffusive transfer mechanisms. The symmetry-breaking bifurcation
is expected to occur in generic shearing flows, and represents a possible means for heat or mass transfer
enhancement from the dispersed phase in multiphase systems.
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Much insight has been gained into the flow behavior of
suspensions in which viscous forces dominate over fluid
inertia [1,2]. However, the fluid flow and heat and mass
transfer within suspensions may change in fundamental
ways when fluid inertia is important on the micro- (or
particle-) length scale. In sheared suspensions, microscale
inertia is characterized by the particle Reynolds number,
Re � a2 _�=�, a dimensionless ratio of the magnitudes of
inertial and viscous forces on the scale of a single particle;
here, a is the particle size (radius for spherical particles), _�
a measure of the fluid velocity gradient, and � the kine-
matic viscosity of the suspending fluid. In this Letter, we
show that microscale inertia dramatically alters the stream-
line topology and the heat or mass transfer in suspensions
of neutrally buoyant particles subject to simple shear flow
when Re is small but nonzero.

Inertial effects become important in suspensions of large
particles (tens of microns) or in relatively low viscosity
fluids. An ambient shear will dominate effects related to
sedimentation when the density mismatch with the sus-
pending medium is small. Applications include emulsion
polymerization where the exothermic polymerization oc-
curs in suspended droplets, bioreactors using suitably im-
mobilized, cell or cell aggregates, and drug delivery with
porous polymer particles.

Progress in the understanding of microscale inertial
effects has been limited despite their fundamental signifi-
cance. Analytical results exist in two dimensions for sim-
plified scenarios; for instance, the flow around a cylinder at
finite Re in an ambient shearing flow [3]. Solutions to
similar problems in three dimensions have mostly re-
mained elusive, since the presence of vortex stretching
enormously complicates the fluid dynamics. We show
here that the dimensionality of the embedding space plays
a crucial role in heat or mass transport.

It has been known since the work of Acrivos and co-
workers in the 1970’s [3,4] that, in the absence of inertia
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(Re � 0) the heat transfer from neutrally buoyant torque-
free spheres in simple shear flow is diffusion limited at
large Pe [5]; the Peclet number, Pe � aU=�, is a dimen-
sionless measure of the relative dominance of convection
and diffusion with U being the velocity scale (U� _�a in a
shearing flow) and � the thermal diffusivity. The domi-
nance of diffusive processes even at large Pe is unexpected,
and stems from the existence of closed streamlines in a
reference frame translating with the sphere. As a result,
fluid elements near the sphere move around it in periodic
orbits, being unable to carry heat away, and one does not
observe the familiar boundary layer enhancement of heat
transfer from a particle in open flows [6].

For uniform flow past a fixed sphere, the dimensionless
flux from the particle surface, as characterized by the
Nusselt number, is Nu�O�Pe1=3� for large Pe. The
Nusselt number is the heat flux measured in (dimension-
less) conduction units; thus, Nu � Q=4�ka�Ts � T1�,
where Q is the dimensional heat flux, k the thermal con-
ductivity, and (Ts � T1) the temperature difference be-
tween the surface and ambient fluid. For large Pe, the
heat diffuses across a thin O�aPe�1=3� boundary layer on
the particle surface, and is thereafter rapidly carried away
by fluid elements spending only a O�a2=��Pe2=3�	 time in
the neighborhood of the particle. As Pe increases, the heat
transfer becomes increasingly efficient when compared to
pure conduction. On the other hand, for a torque-free
sphere in simple shear flow (U� _�a) at Re � 0, the region
of closed streamlines around the sphere implies that the
residence time of a fluid element in its vicinity diverges,
and convection is no longer effective in enhancing heat
transfer. In contrast to open flows, Nu tends to a O�1�
constant for large Pe; indeed, Acrivos [7] showed that
limPe!1Nu 
 4:5 when Re � 0.

The situation is, however, radically altered at small but
finite Re via a bifurcation in the streamline topology re-
sulting from inertial forces. The inertialess streamline
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configuration for a torque-free sphere in simple shear is
shown in Fig. 1. In the absence of the sphere, an exact
balance of the extensional and rotational components of
the undisturbed simple shear leads to a rectilinear stream-
line pattern. The presence of the rotating sphere alters the
local balance of extension and vorticity, and creates a
rotational region with closed streamlines in its vicinity.
This region of closed streamlines, in fact, has an infinite
volume. An axisymmetric separatrix envelope, infinite in
extent, separates the fore-aft symmetric open streamlines
outside from closed ones within. The symmetry of the
streamline configuration is rooted in the linearity and
reversibility of the Stokes equations [2]. At finite Re fluid
elements circulating around the sphere are centrifuged out,
destroying the closed orbit structure present at Re � 0.
Streamlines close to the torque-free sphere, and in the
plane of shear, now spiral outward. Incompressibility en-
sures that the net radial outflow that results is compensated
by a corresponding influx of fluid along the vorticity axis.
The finite Re velocity field also exhibits antisymmetric
recirculating wakes (see Fig. 2) at distances along the
flow axis greater than O�aRe�3=10� [8,9], these regions
diminishing in extent away from the plane of shear. This
wake structure, together with the outward spiraling close to
the sphere, opens up channels via which heat can now be
carried away by convection. The finite Re streamline pat-
tern in Fig. 2 was determined using results for the O�Re�
velocity components obtained by Peery [10]; as discussed
below, the topological implications of the O�Re� inertial
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FIG. 1. The two figures show the fore-aft symmetric stream-
line pattern in the plane of shear, and the corresponding three-
dimensional streamline topology, respectively, for a torque-free
sphere in simple shear flow without inertia; an axisymmetric
separatrix envelope separates the closed from the open stream-
lines. Here, x, y, and z denote the flow, gradient, and vorticity
axes, respectively.
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correction appear to have gone unnoticed. Note that the
finite Re streamline topology is still invariant to a �
rotation about the vorticity axis, and therefore consistent
with the antisymmetry of simple shear.

The broken symmetry at finite Re allows for a net
convection of heat away from the sphere, and one must
observe a boundary layer enhancement of heat transfer at
large enough Pe in a manner akin to open flows. However,
although the Nusselt number isO�Pe1=3� for large Pe, there
must be an additional dependence on Re because the
residence time of a fluid element in the thermal boundary
layer is a function of Re. The residence time evidently
diverges at Re � 0 when the streamlines in the vicinity of
the sphere close, and is therefore a decreasing function of
Re for small Re. As is shown below, in the limit Re Pe�
1, the dominant transfer of heat occurs across a thin
O�Re Pe��1=3 boundary layer, and it becomes possible to
analytically determine Nu as a function of Re and Pe.

To begin with, we write down the equations governing
the transport of momentum and heat. The velocity (u) and
pressure fields (p) satisfy the Navier-Stokes equations with
the continuity equation enforcing the incompressibility
constraint. In the dimensionless form, we have

Re �u � ru� � �rp�r2u; r � u � 0; (1)

in a frame of reference that translates with the neutrally
buoyant sphere [11]. The velocity field in this reference
frame is steady and satisfies the following boundary con-
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FIG. 2 (color online). The top figure shows the streamline
pattern in the plane of shear, at finite Re, for a torque-free sphere
in simple shear flow. The figure below depicts the finite Re three-
dimensional streamline topology, including the convective chan-
nels that border the recirculating wakes.
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u � �s ^ r at r � 1; (2)

u ! � � r as r! 1; (3)

where � � 1x1y is the transpose of the velocity gradient
tensor for simple shear flow; here, x, y, and z correspond to
the flow, gradient, and vorticity directions, respectively, of
the ambient simple shear. It is convenient to define a
normalized temperature � � �T � T1�=�Ts � T1�, which
satisfies a convection-diffusion equation,

Pe �u � r�� � r2�; (4)

with the boundary conditions

� � 1 at r � 1; (5)

�! 0 as r! 1: (6)

The angular velocity of the sphere, �s, in (2) is determined
from the torque-free constraint; in mathematical terms, the
condition may be expressed asZ

r�1
r ^ �� � n�dS � 0; (7)

where r ^ �� � n�jr�1 is the antisymmetric first moment of
the force density on the surface of the sphere, � � �p��
�ru� ruy� being the stress tensor.

We assume the temperature variations to be small
enough for fluid properties to remain unaffected, as is
typically the case. One may then first obtain the velocity
field from solving (1), and thereafter, solve (4) for the
temperature field using the boundary conditions (5) and
(6). Finally, the dimensionless rate of heat transfer from the
sphere surface may be evaluated as

Nu � �
1

4�

Z
r�1

@�

@r
dS: (8)

For Re � 0, (1) reduces to the Stokes equations which
are easily solved. With the inertial terms included, the
solution of (1) in an unbounded domain is a nontrivial
task even in the limit Re� 1, requiring singular perturba-
tion techniques [8,12]. The difficulty arises because the
inertial acceleration eventually becomes comparable to
viscous forces at distances beyond an inertial screening
length that for simple shear flow scales as aRe�1=2. Thus,
for any finite Re, the Stokes velocity field is no longer a
uniformly valid approximation. In the present context,
however, the dominant temperature variations are expected
to occur in a thin boundary layer on the surface of the
sphere for large Pe. Therefore, one only requires the form
of the velocity field, toO�Re�, near the sphere surface. This
may be obtained using the O�Re� correction to the Stokes
velocity field in the inner region (r� Re�1=2), derivable
by a regular perturbation procedure [10].

Thus, for Re� 1, the velocity field close to the sphere
may be written as u � u�0� � Reu�1� � o�Re�. In a spheri-
cal coordinate system with its polar axis along the vorticity
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direction, one has for the Stokes velocity field u�0�,R
2�
0 u�0�r d� �

R
2�
0 u�0�� d� � 0, implying that the near-field

streamlines are closed in the absence of inertia. Using
Peery’s results [10] to determine the components of u�1�

for r! 1, the approximate form of (4) near the sphere is

�r� 1�2ff0��;�� � Ref1��;��g
@�

@r
� �r� 1�

 fg0��;�� � Reg1��;��g
@�

@�
��s

@�

@�
�

1

Pe
r2�; (9)

for small Re, where
R

2�
0 f0d� �

R
2�
0 g0d� � 0, and

Z 2�

0
f1��;��d��

�
�

75

256
sin4��

25

32
sin2��

35

96

�
; (10)

Z 2�

0
g1��;��d� �

sin� cos�
384

�140� 45sin2�	: (11)

The dominant motion close to the sphere is that of a solid-
body rotation with angular velocity ��s1z. The no-slip
boundary condition on the sphere surface ensures that the
meridional and radial velocity components in (9) are small,
being linear and quadratic functions, respectively, of the
radial distance away from the sphere. Averaging (9) over
the azimuthal coordinate � � �0; 2��, one obtains

Re
�
�r� 1�2

2�

Z 2�

0
f1d�

@��0�

@r

�
�r� 1�

2�

Z 2�

0
g1d�

@��0�

@�

�
�

1

Pe
r2��0�; (12)

where we have used ��r; �; �� 
 ��0��r; ��, since the
rapid convection along the azimuthal coordinate, while
not leading to any net transport of heat, renders the tem-
perature gradient in this direction asymptotically small.
Evidently, (12) implies that it is the �-averaged O�Re�
convection that enhances the heat transfer at large Pe. In
particular, with y � r� 1, the leading order balance be-
tween the convective terms and the radial diffusive term in
(12) reduces to Re y� Pe�1=y2, giving y�O�Pe Re��1=3

for the boundary layer thickness. Thus, using the rescaled
boundary layer coordinate, � � �Re Pe�1=3�r� 1�, one ob-
tains

�2

�Z 2�

0
f1d�

�
@��0�

@�
� �

�Z 2�

0
g1d�

�
@��0�

@�
�
@2��0�

@�2 :

(13)

Hereafter, the analysis proceeds along standard lines [6].
Defining a similarity variable s � �=h�cos��, with h�cos��
characterizing the angular dependence of the boundary
layer thickness, one finds
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��0��s� �
1

��43�

Z 1
s
e�s

03
ds0; (14)

where

h�cos�� �
91=3

sin1=2�
�R

2�
0 g1d�

�
1=2



�Z �

0
d�0sin3=2�0

�Z 2�

0
g1d�

�
1=2
�

1=3
: (15)

The resulting dimensionless heat flux is found to be [13]

Nu � 0:33�Re Pe�1=3 �O�1�; (16)

where theO�1� correction arises both from terms neglected
in the boundary layer approximation above, and from the
thermal wake at � � �

2 . Even for a modest particle
Reynolds number of about 0.3, Nu given by (16) exceeds
its inertialess diffusion-limited value when Pe> 8800.

The above bifurcation phenomenon must, in fact, occur
for a neutrally buoyant torque-free sphere in any planar
shearing flow provided that the ambient velocity gradient
at its location is nonzero. The velocity disturbance due to
the sphere being asymptotically small near its surface, the
flow in this region approximates a solid-body rotation. The
reversibility of the Stokes equations then implies the ex-
istence of closed streamlines in the vicinity of the rotating
sphere at Re � 0. Finite Re should again lead to a con-
vective enhancement, although the detailed streamline to-
pology depends on the nature of the ambient flow. A
calculation of the Nusselt number for the case of a
torque-free sphere in a planar linear flow [14], together
with a demonstration of the symmetry-breaking bifurca-
tion for a nonlinear flow, is presented elsewhere [15].

Microscale inertia will also affect transport processes in
particle-laden turbulent flows. On the scale of sub-
Kolmogorov particles, turbulence may be regarded as a
stochastic linear flow. Based on the degenerate character of
the inertialess flow field around a particle in any planar
linear flow, Batchelor [16] inferred that the convective heat
transfer from such particles only depends on the rate of
extension in the vorticity direction. At finite Re, this sim-
plistic scenario is no longer true; the extensional compo-
nents in the plane transverse to the vorticity vector will, for
instance, induce an O�Re� flux that acts to retard the
inertialess convective flux [17].

The role of inertia in convective enhancement discussed
here has apparently been overlooked despite the solution
for the velocity field at small Re, for distances smaller than
the inertial screening length, being available since Peery
[10]. It appears that the earlier efforts of Acrivos and co-
workers on heat transfer from a torque-free cylinder in
simple shear, wherein inertia does not effect any qualitative
change, led to the erroneous belief, most recently evi-
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denced in the work of Mikulencak and Morris [18], that
a similar situation prevails in three dimensions. The di-
mensionality of space proves crucial in this context, how-
ever. A two-dimensional phase plane resulting from a
solenoidal velocity field can only have centers and saddles
as fixed points; physically, the pressure field adjusts itself
to yield closed albeit asymmetric orbits at any finite Re
[3,19]. This is no longer true in three dimensions. Owing to
the additional degree of freedom, viz motion in the z
direction, the O�Re� pressure field does not completely
offset the centrifugal force field, and the resulting imbal-
ance alters the streamline topology.
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