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Collapse of Optical Vortices
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We theoretically and experimentally investigate the self-focusing of optical vortices in Kerr media. We
observe collapse to a distinct self-similar profile, which becomes unstable to azimuthal perturbations. We
analyze the azimuthal modulational instability for ring-shaped vortices and predict the number of
azimuthal maxima solely as a function of power and topological charge. In our experiments, the observed
multiple-filamentation patterns are in excellent agreement with our theoretical analysis.
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Pattern formation in nonlinear systems is investigated in
a wide range of fields including optics, fluids, plasma phys-
ics, and material science [1]. In nonlinear optics, spatial
features of an optical beam in a Kerr medium can arise
from modulational instability (MI) [2], which can lead to
multiple filamentation (MF), wherein each light filament
holds a precise quanta of power and, in the absence of
temporal effects or higher-order terms, will undergo col-
lapse [3]. These MF patterns can be dramatically manipu-
lated with beam shape [4,5], and the noise that seeds the MI
does little to change the overall MF patterns [6].

Optical vortices with orbital angular momentum [7]
reveal new dimensions of complexity in nonlinear beam
propagation. These helical-phase beams have a strictly
zero amplitude at the singularity where the phase is un-
defined and a topological charge m that is a measure of the
phase winding. Soliton vortex dynamics have been theo-
retically investigated in numerous contexts [8,9], and the
angular momentum and spatial dynamics have been
studied experimentally in defocusing Kerr, photorefrac-
tive, quadratic, and saturable nonlinear media [9,10].
Some evidence of vortex MF has been observed [11];
however, these preliminary experiments were with powers
below the critical threshold for vortex ring collapse.

In this Letter, we investigate the collapse of optical
vortices in self-focusing Kerr media. In contrast to the
MF of vortex rings in saturable media where an m-charge
vortex tends to produce 2m filaments [12], we find fila-
mentation in a purely Kerr medium to be a function of both
input power andm. We derive a new analytical relation that
predicts the number of filaments which is in agreement
with numerical simulations. Furthermore, we perform, to
our knowledge, the first experimental study of collapsing
vortices in Kerr media, the results of which are in excellent
agreement with our predictions. The radially symmetric
self-similar collapse of these beams, investigated previ-
06=96(13)=133901(4)$23.00 13390
ously [8], is performed via a different formalism [13],
and we show the agreement between simulation and ana-
lytical curves. Our analysis extends the previous work of
vortex azimuthal MI [14,15].

In our analysis, we use the nondimensionalized �2�
1�D nonlinear Schrödinger equation,
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0 is the diffraction length, k � 2�n0=� is the wave

number, � is the vacuum wavelength, n0 is the linear index
of refraction, and r0 is the input radius of the mode field.
Diffraction is described by the second term where the
transverse Laplacian is given by r2
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�2 @�;�, and the third term is a result of the intensity-

dependent refractive index n � n0 � n2I. It is character-
ized by the critical power for self-focusing Pcr �
���2=4n0n2�, where � is a constant dependent upon the
initial beam shape [16]. The power is P � n0c

2� �R
jA��; �; ��j2r0�r0d�d�.
A radially symmetric field with topological charge m

will approach a specific self-similar shape in a manner
analogous to the evolution of m � 0 beams to the
Townes profile [17,18]. The critical power for vortex ring
collapse for a Laguerre-Gaussian with vortex chargem can
be approximated as [8]

P�m�cr �
22m�1��m� 1���m� 2�

2��2m� 1�
Pcr: (2)

Regardless of the initial shape, for powers above a critical
threshold, the collapsing portion of the beam converges
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towards a distinct profile, in which the peak intensity scales
inversely with the width, while the remaining portion
diffracts. This self-similar profile  norm thus has the form
 ��; �; ��norm � L��� ��; �

L��� ; ��, where L��� � 1
maxj j .

We define ~Ym;P to be the profile to which  ��; �; ��norm is
asymptotic as � tends to �c, which is the normalized
distance at which  becomes singular. To find ~Ym;P analyti-
cally, we use a general lens transformation for solutions of
self-similar type near collapse in Eq. (1) [13], assume
L��� � �

��������������
�c � �
p

, and find that ~Ym;P obeys the equation
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where ~� � �
L��� is the normalized radius and ~Y�~� � 0� �

~Y�~� � 1� � 0. The Townes profile is equivalent to ~Ym;P
with m � 0, � � 0, and P � Pcr. In Fig. 1 we plot ~Y for
different m and P, determined by employing a shooting
method, beginning close to zero and minimizing the power
at a radius 10 times that of the peak field, fixing � for a
solution with unit power, and finally renormalizing the
result so that the peak field amplitude is 1. Thus, ~Ym;P
are the unique solutions of Eq. (3) defined bym and P, with
power and maximal norm of 1.

In Fig. 2 we plot the evolution of a Laguerre-Gaussian
input field with a topological charge of m � 1 and P �
4:4Pcr 
 1:1P�1�cr . After propagating � � 0:5, the intensity
of  norm above the 1=e2 point is nearly identical to the ~Y
profile. The ring intensity continues to increase and corre-
spondingly shrink in both diameter and thickness as its
normalized profile converges to ~Y. The relatively wide
sampling of �4096� 4096	 points for � � ��20; 20	 in
the split-step numerical computation along with a super-
Gaussian transmission window ensure that numerical noise
and reflected power do not prematurely seed vortex
breakup or cause vortex transmutation [19], and a nonuni-
form propagation stepsize minimizes simulation error.
Similar convergence to ~Y can be demonstrated with other
radially symmetric input profiles of varying m and P.

The addition of azimuthal noise alters collapse to a self-
similar ring profile, and instead we observe breakup into a
ring of individual filaments and investigate these MF pat-
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FIG. 1 (color online). Self-similar profiles ~Ym;P with
(a) P � P�m�cr and � � 0:47 for m � 1, 2, and 3
(b) P � 4Pcr 
 P�1�cr and P � 8Pcr 
 2P�1�cr , corresponding to
� � 0:47 and � � 0:38, respectively, for m � 1.
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terns. Because of the on-axis phase singularity where the
field is strictly zero, optical vortex beams result in the
formation of filaments off axis. For our perturbation analy-
sis, instead of plane waves [14] or uniform-intensity rings
[15], we use stationary field amplitudes resembling the
Laguerre-Gaussian TEMp;l modes, with the radial mode
index p � 0, the azimuthal index l � m, such that

 ��; �; �� � C�1� �� ~LG0;m��; ��; (4)

~LG 0;m��; �� �
�
�
w

�
m
e�1=2��=w�2eim�; (5)

where C and w are the normalization terms for the electric
field amplitude and mode field, respectively, as given by
Eq. (1), and � is the phase perturbation of azimuthal wave
number 	,

� � �1���ei	� � �2���e�i	�: (6)

We assume the instability occurs at the radius of maximum
intensity and substitute � �

����
m
p

w. We look for solutions to
�1��� and �2��� in the form of eG� , where G has a non-
vanishing real part, and identify the relation for G,

G �
�m� 1
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q
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where ~Pm �
2P�mm

Pcrem
and 
 � 2m�m2 � 	2. The wave

numbers 	 which satisfy Eq. (7) for positive G will expe-
rience gain as plotted in Fig. 3(a). As the power increases,
G becomes wider and taller. As the power or topological
charge increases, G shifts towards higher 	. It follows im-
mediately from Eq. (7) that the maximum G is attained at

�2 ~Pm and is equal to Gmax�2�m� 1

2�P�m
m�1=Pcre

m

from which we can extrapolate that at higher powers,
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FIG. 2 (color online). Simulation plots for an input ~LG0;1 with
P � 4:4Pcr 
 1:1P�1�cr at � � 0, 0.5, and 1.3. Surface plots of
j j2 are shown with the vertical axis scaled by P. Intensity cross
sections of  norm are drawn for the input (dashed line), profiles at
� � 0:5 and 1.3 (solid line), and the ~Y to which  norm

converges (dotted line). The intensity at ~� � 0, which is equal
to zero, is not shown.
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FIG. 3 (color online). (a) Gain G of the azimuthal instability as
a function of wave number 	 for m � 1, P � 5Pcr 
 1:25P�1�cr ,
10Pcr 
 2:5P�1�cr , and 15Pcr 
 3:75P�1�cr . As the power increases,
G shifts to higher values of 	. (b) Plot of the maximum-gain 	 as
a function of P=Pcr for m � 1, 4, and 7.
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vortices with higher topological charge are more suscep-
tible to azimuthal MI. This relation for Gmax yields the
following prediction for the number of azimuthal maxima
in the MF patterns for a given value of P:

	max �
�����������������������������������
2 ~Pm � 2m�m2

q
: (8)

Thus, we can approximate the wave number of maximal
gain and the MF patterns solely as functions of beam power
and topological charge. Plots for	max as a function ofP for
m � 1, 4, and 7 are shown in Fig. 3(b). We verified our
model with the numerical code used to demonstrate self-
similar collapse, and using 10% amplitude and phase
noise, we find that our simulations match Eq. (8) for a
topological charge up to at least m � 10 (see Fig. 4). Our
work is consistent with recent analysis [15], predicting
2m� 1 azimuthal maxima at P � P�m�cr . Moreover, our
theory utilizes an integrable analytic field, the result of
which is independent of ring radius and valid for powers
other than P�m�cr .

Above P�m�cr , numerical simulations confirm the analyti-
cal prediction from Eq. (7) that higher-charge vortices are
increasingly susceptible to azimuthal MI since MF occurs
0 20 40 60 80 100 120 140 160
0

5

10

15

20

25

30

35

40

P/Pcr

η

P/P   = 140 .4cr

P/P   = 35.1crm
ax

FIG. 4 (color online). Numerical and analytical results for
topological charge m � 10. The curve plots the wave number
	max of maximal gain as a function of P=Pcr. The left inset
shows the MF pattern of P � 35Pcr 
 0:56P�10�

cr at � � 0:07
from numerical simulations with 16 azimuthal maxima. The
right inset shows that for P � 140Pcr 
 2:24P�10�

cr and 36 azi-
muthal maxima at � � 0:02. In both cases the analytical pre-
dictions are in excellent agreement with the simulation results.
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at shorter normalized distances for comparable noise and
powers. At lower powers, spatial spreading results in
higher stability to azimuthal MI [11]. We observe in
our simulations that a vortex of m � 10 and P � 20Pcr 


0:3P�10�
cr with 5% noise neither forms azimuthal maxima

nor collapses but instead diffracts as a ring. We find,
however, the same m � 10 vortex with 20% noise forms
10 filaments in agreement with analytical predictions. Our
perturbation analysis utilizing a stationary profile accu-
rately describes the MF of Laguerre-Gaussian beams for
powers below P�m�cr , and for powers above P�m�cr , when
breakup caused by MI is seeded initially. Under conditions
where the vortex is more stable to MI and approaches the ~Y
profile before undergoing filamentation, our prediction for
the number of filaments may become less accurate.

The experimental setup for investigating the col-
lapse dynamics of optical vortices is shown in Fig. 5.
Laguerre-Gaussian modes are produced using spiral phase
plates with 90 fs, 800 nm pulses of a Ti:Sapphire regen-
erative amplifier system. The phase plates are m � 1 and
are made from a polymer material using a high-precision
molding technology [20]. Two plates are stacked to pro-
duce m � 2 vortices. The telescoping is changed to vary
the input beam width, and the final telescoping ranges from
50:1 to 2:1 demagnification. We estimate that the pulses
have slightly broadened to 100 fs after the telescoping. The
vortices are propagated through an adjustable-length cell
filled with water [21]. The time-averaged spatial beam
profile from approximately 130 pulses is imaged with a
12-bit CCD camera (Spiricon LBA-FW-SCOR20).
Distilled deionized water is used in the experiments, since
it has a higher threshold for plasma formation than plain
distilled water. Figure 5 shows the typical input intensity
profile and its interference pattern with a flat-phase
Gaussian beam. The latter shows a branch in the fringes
verifying the m � 1 and m � 2 singularities produced by
the phase plates.
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FIG. 5 (color online). Experimental setup. The half-wave plate
WP and polarizing beam splitter PBS control the power. In the
spatial filter L1-A2-L2, aperture A2 is a high-power tungsten
pinhole. Aperture A3 selects a small portion of the Gaussian
beam to transmit through the spiral phase plate(s) PP. Aperture
A4 filters out higher-order Laguerre-Gaussian modes. The lower
insets show typical transverse profiles incident upon the water
cell and branching interference fringes demonstrating the vortex
phase. The fringes are produced using a continuous-wave beam
at 800 nm and by imaging the phase plate(s) with a Gaussian
beam of zero topological charge.
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FIG. 6 (color online). Experimentally observed output profiles
for m � 1 with pulse energies (A) 6 
J, (B) 12 
J, (C) 18 
J,
and corresponding simulations with powers (a) P�3:85Pcr


P�1�cr , (b) P�7:7Pcr
2P�1�cr , (c) P�11:6Pcr
3P�1�cr . Experi-
mental pictures for m � 2 with pulse energies (D) 6 
J,
(E) 12 
J, (F) 18 
J, and corresponding simulations with pow-
ers (d) P�8:6Pcr
1:1P�2�cr , (e) P�17:2Pcr
2:2P�2�cr , (f) P�
25:8Pcr
3:3P�2�cr . Plots of 	max vs P=Pcr, with points along the
curve marked to represent corresponding MF patterns shown for
m � 1 (G) and m � 2 (H).
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We propagate m � 1 and m � 2 vortices until just be-
fore the point at which supercontinuum generation is ob-
served, which indicates that collapse has occurred [22], and
modify the telescoping L3-L4 so that this distance to
collapse is 15–20 cm. Figs. 6(A), 6(a), 6(B), 6(b), 6(C),
6(c), 6(D), 6(d), 6(E), 6(e), 6(F), and 6(f) show experi-
mental results and the corresponding simulations for m �
1 and m � 2, where doubling and tripling the power has
the effect of changing the number of azimuthal maxima
from 2 to 4 to 5 and from 5 to 8 to 10, respectively. These
results are highly repeatable and the number of azimuthal
maxima, within the propagation distances described, vary
at most by one. The CCD images are also highly stable,
which we attribute to the pulse-to-pulse power stability of
our laser system. The primary source of noise is inhomo-
geneity in the beam profile due to the alignment and
imperfections of the PPs and the final aperture A4.
Differences between experimental and simulation images
are not surprising in view of these imperfections. However,
while variations of the input profile affect the distance to
collapse, the resulting 	, within the lengths described, is
virtually unchanged. We estimate that a 0:2 
J, 100 fs
pulse has a peak power equal to one critical power. Our
13390
absolute power measurements are within a factor of 9 of
our analytical predictions, and our relative power measure-
ments are in excellent agreement as shown in Fig. 6(G) and
6(H). We believe that deviations in power from the theory
are due to dispersive broadening effects that occur during
propagation, which in our experiments is responsible for a
decrease in peak power of 30%.

In conclusion, we observe self-similar collapse of vortex
beams. These beams are azimuthally unstable, and we
derive an analytical expression for the number of azimuthal
maxima in the breakup as a function of the power and
topological charge, which predicts the MF of vortices both
below and above the critical power for vortex collapse,
P�m�cr . Experimental results show this trend to be reliable for
optical pulses undergoing collapse with powers as high as 3
P�m�cr . Understanding MF behavior in the long-distance
propagation of femtosecond laser pulses is valuable to
remote-sensing applications [23]. Moreover, our results
may also have relevance to vortices in Bose-Einstein con-
densates since the behavior of those systems has strong
analogies with that of optical beams in Kerr media [9].
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