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Generating Controllable Atom-Light Entanglement with a Raman Atom Laser System
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We introduce a scheme for creating continuous variable entanglement between an atomic beam and an
optical field, by using squeezed light to outcouple atoms from a Bose-Einstein condensate via a Raman
transition. We model the full multimode dynamics of the atom laser beam and the squeezed optical field
and show that, with appropriate two-photon detuning and two-photon Rabi frequency, the transmitted light
is entangled in amplitude and phase with the outcoupled atom laser beam. The degree of entanglement is
controllable via changes in the two-photon Rabi frequency of the outcoupling process.
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FIG. 1. Internal energy levels of our three-level atom. A con-
densate of state j1i atoms confined in a trapping potential is
coupled to free space via a Raman transition. The two fields of
the Raman transition are a probe beam [annihilation operator
Ê�x; t�] and a control field, which we have assumed is strong
compared to the probe beam and can be approximated by a
classical field [��x; t�] which is detuned from the excited state
by an amount �.
Introduction.—Interferometry using massive particles
promises hugely increased sensitivity over that available
optically [1]. As one example, given equal enclosed area
and particle flux, the sensitivity of atom interferometer
gyroscopes exceeds that of photonic gyroscopes by a factor
of 1011 [2]. A seemingly obvious route to take advantage of
this feature is the use of atom lasers in interferometry.
However, there is a problem in that their flux cannot be
increased arbitrarily due to the non-Markovian nature of
the outcoupling process [3]. Hence, there is much interest
in finding alternate methods for improving the sensitivity.
As optical detection technology is more developed than
that used for atomic detection, it seems that it would be
advantageous to adapt atom-light interferometers such as
that demonstrated recently at Massachusetts Institute of
Technology [4] to combine the sensitivity of atoms to
rotations, gravitational and magnetic fields, with the con-
venience and detection efficiency of light. Having previ-
ously shown that a squeezed atom laser can be made by
using squeezed light to outcouple atoms from a trapped
Bose-Einstein condensate (BEC) [5,6], we now introduce a
scheme which produces entanglement between the out-
coupled atoms and the transmitted light. This scheme could
potentially be used to increase the sensitivity of an atom-
light interferometer to below the standard quantum limit
and approach the Heisenberg limit [7]. Although the cre-
ation of entangled atom-photon pairs has been proposed
[8], and deterministic entanglement between the spin state
of an atomic ensemble and the polarization state of light
has been demonstrated [9], our scheme has the advantage
that both the atomic and optical outputs form controllable,
directed monochromatic beams. The continuous variable
entanglement present also facilitates the inference of quan-
tum statistical properties of the atomic beam via homodyne
measurements on the output optical field, without needing
the complication of atomic homodyne measurements.

Our scheme is based on a Raman atom laser (Fig. 1). A
BEC consisting of three-level atoms is confined in a mag-
netic trap and manipulated by two laser fields. A photon
from the probe beam is absorbed, and one is emitted into
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the control beam, transferring the internal state of the atom
from j1i (trapped) to j2i (untrapped) and giving the atom a
momentum kick of @�kprobe � kcontrol�, forming an atom
laser beam. We showed in Refs. [5,6] that, under appro-
priate conditions, the quantum state of the probe field can
be transferred almost completely to the atom laser beam.
The feature we stress in this Letter is that, when the two-
photon Rabi frequency is less than optimal for complete
quantum state transfer, the initial quantum state of the
probe field is shared with the atomic beam, resulting in
continuous variable entanglement between the two. This is
reminiscent of a variable reflectivity beam splitter with an
arbitrary quantum state at one input and vacuum at the
other. It has previously been shown that a 50=50 beam
splitter with quadrature squeezed light entering one port
and vacuum at the other port yields continuous variable
entanglement in amplitude and phase at the two outputs
[10]. The model we develop here is a little more compli-
cated, because we must consider the full multimode dy-
namics of the optical and atomic fields to take into account
the absorption of the probe beam as it travels through the
condensate and the possibility of outcoupled atoms cou-
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FIG. 2. Density of the condensate atoms j�0�x�j2 (dotted-
dashed line), atom laser beam h ̂y2 �x� ̂2�x�i (solid line), and
the density of the probe optical field hÊy�x�Ê�x�i multiplied by
the ratio of the speed of light to the mean atomic speed mc=2@k0

(dashed line), at t � 40 ms for (a) �23 � 1:5	 108 rad s�1 and
(b) �23 � 0:75	 108 rad s�1 after 40 ms. The probe beam and
the atom laser beam have been multiplied by 100 in order to fit
them on the same scale as the condensate.
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pling back in to the condensate due to the finite time they
spend in the interaction region, but essentially operates on
the same principle.

The Hamiltonian describing the system is

H �H atom �H int �H light
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where H1 � ��@
2=2m�r2 � Vtrap�x�, ��x; t� �

�23ei�k0x��!0���t�, where �23 is the Rabi frequency for
the j2i ! j3i transition, and m is the mass of the atoms.
 ̂1�x�,  ̂2�x�,  ̂3�x�, and Ê�x� are the annihilation operators
for the condensate mode (internal state j1i), untrapped
atoms (j2i), excited state atoms (j3i), and probe beam
photons, respectively, satisfying the usual bosonic commu-
tation relations. We have neglected the atomic interactions
in Eq. (2), as they can be ignored for a sufficiently dilute
condensate, or tuned to zero using a Feshbach resonance.
For the parameters used in this Letter, even without the use
of Feshbach techniques, we estimate the total phase diffu-
sion due to atomic collisons to be about 10�3 rad over the
duration of the experiment, so that there is no practical
reason to use the extremely complicated methods neces-
sary for a fuller analysis. The coupling coefficient
g13�!k� � �d13=@�

�������������������
@!k=2�0

p
, where d13 is the dipole mo-

ment for the j1i ! j3i transition, is assumed to be approxi-
mately flat in the range of interest of our system. If we
assume that the detuning of the control beam from the
excited state (�) is large compared to all other frequencies
in the system, including the kinetic energy due to the
photon recoil, we can adiabatically eliminate the excited
state and obtain the following equations of motion for the
Heisenberg operators:

i _̂ 2 � H2 ̂2�x� ��C
~E�x�; (2)

i _~E�x� � HE
~E�x� ���C ̂2�x�; (3)

with ~E � Ê�x�ei�!0���t�, �C � �g13��23=��e�ik0x�1�x�,
H2 � �

@

2mr
2 � �j�23j

2=��, and HE � �ic
@
@x� �!0 �

�� � �jg13j
2=��j�1�x�j2, with �1�x; t� � h ̂1�x�i repre-

senting the semiclassical wave function for the condensate
atoms. In our calculation, we have made the approximation
that the condensate remains in a coherent state, i.e.,
 ̂1�x� � h ̂1�x�i � �1�x�. This is valid if the outcoupling
is weak, in the sense that the number of atoms outcoupled
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is small compared to the total number in the condensate,
and the interactions are sufficiently small that phase diffu-
sion of the condensate mode can be ignored. The evolution
of the condensate mode is then given by

i _�1�x� �
�
H1

@
�
g2

13

�
h ~Ey�x� ~E�x�i

�
�1�x�

��ChÊ
y�x� ̂2�x�i: (4)

To analyze the dynamics of the system, we expand the
field operators in a mode basis and solve for the dynamics
of each of the mode functions, as described in Ref. [6]. The
equations of motion were integrated using a 4th order
Runge Kutta algorithm with a cross propagation step for
the optical field, using the numerical package XMDS [11].
We have chosen realistic parameters for experiments with
87Rb atoms. Unless stated otherwise, we have set m �
1:4	 10�25 kg, g13 � 2:9	 105 rad s�1 m1=2, and � �
1011 rad s�1. We started with a condensate of N � 106

atoms, initially in the ground state of a harmonic trap,
with a trapping frequency of 5 rad s�1. The initial multi-
mode quantum state of the probe optical field was chosen,
in a plane wave basis, such that one mode (wave vector kp)
was an arbitrary quantum state j�i, with a mean flux of
2:9	 106 photons=s, with all other modes in the vacuum
state. This mode was chosen such that the detuning from
two-photon resonance was appropriate for an optimal
Raman transition, and we assumed a geometry for the
two optical fields such that the maximum possible momen-
tum kick was transferred to the atoms, i.e., jk0 � kpj �

2k0. The initial quantum state of the untrapped atomic field
was chosen as vacuum. Figure 2 shows the density of the
1-2
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condensate, output beam, and probe field after 40 ms of
outcoupling for two different Rabi frequencies.

In order to see how the quantum statistics are transferred
in each case, we first need to define appropriate mode-
matched amplitude and phase quadratures [12]. For the
outcoupled atoms, these are X̂� �

R
x2
x1
�L� �x; t� ̂�x; t� �

H:c:�dx and X̂�� i
R
x2
x1
�L� �x;t� ̂�x;t��H:c:�dx, while for

the transmitted light we define Ŷ��
Rx02
x01
�L�E�x;t�Ê�x;t��

H:c:�dx and Ŷ� � i
Rx02
x01
L�E�x; t�Ê�x; t� � H:c:�dx, where

L �x; t� and LE�x; t� are arbitrary modes which we choose
as plane waves with appropriate wavelength to best match
the modes of the outcoupled atoms and transmitted light,
respectively, and are normalized on the interval of integra-
tion. We choose x1 and x2 to be points in the path of the
atom laser beam and x01 and x02 to be downstream of the
condensate such that the light operators and atomic opera-
tors can be correlated at the same time, i.e., x01 �
�c=vatom�x1 and x02 � �c=vatom�x2, where vatom � @2k0=m
is the mean speed of the atoms. In practice, this would be
impractical as c=vatom � 1011, and it would be more prac-
tical to detect the quadrature of the light and store it for
later comparison with the atomic quadratures. We use the
equal time definition here for convenience. The commuta-
tion relations give V�X̂��V�X̂��
1 and V�Ŷ��V�Ŷ��
1.

Figure 3 shows the variance of the amplitude quadra-
tures for the atom laser beam (X̂�) and probe beam (Ŷ�)
versus time for the two cases shown in Fig. 2. The initial
state of the optical field is chosen to be an amplitude
squeezed state, with V�Ŷ��t � 0�� � e�2r, with the
squeezing parameter r � 2:0. In case (a), the squeezing
is almost completely transferred to the atom laser beam,
which destroys the squeezing in the optical beam. In
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FIG. 3. Variances of the amplitude quadratures for the atom
laser beam (solid line) and probe beam (dotted-dashed line) for
(a) �23 � 0:75	 108 rad s�1 and (b) �23 � 1:5	 108 rad s�1.
The initial state of the probe beam was an amplitude squeezed
state with a squeezing parameter r � 2:0. In case (b), the
squeezing is almost completely transferred to the atom laser
beam, which destroys the squeezing in the optical beam. In
case (a), the squeezing is only partially transferred, and some
squeezing remains in the optical beam.
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case (b), the squeezing is only partially transferred, and
some squeezing remains in the optical beam. The latter
case is reminiscent of a 50=50 beam splitter.

To detect the entanglement between the probe beam and
the atom laser beam, we use the Einstein-Podolsky-Rosen
(EPR) criterion of Reid and Drummond [13], who defined
inferred quadratures which allowed for measurements that
would seemingly violate the Heisenberg uncertainty prin-
ciple, which is at the heart of the EPR paradox [14]. In
terms of measurable quantities, we consider the inferred
variances Vinf�X̂

�� � V�X̂�� � f
V�X̂�; Ŷ���2=V�Ŷ��g,
where V�X̂�; Ŷ�� � hX̂�Ŷ�i � hX̂�ihŶ�i, resulting from
the optimization of a linear inference procedure.
Quantitatively, Vinf�X̂

��Vinf�X̂
��< 1 (similarly for the

Y� quadratures) is then the requirement for entanglement.
Figure 4 shows the product of the inferred variances versus
time for the case when �23 � 0:75	 108 rad s�1 and r �
2:0. Vinf�X̂

��Vinf�X̂
�� dips well below 1, demonstrating

that there is entanglement between the transmitted probe
beam and the atom laser beam. The entanglement slowly
decreases (as did the squeezing in Fig. 3) due to two
effects. The first effect is the depletion of the condensate,
which changes the effective Rabi frequency between the
optical field and the atomic field. This could be fixed by
slowly increasing the power in the control beam (�23) or
reducing the detuning. The second effect is due to the
phases of the transmitted probe beam and atom laser
beam drifting relative to their respective local oscillators,
such that the quadratures being measured are no longer
exactly orthogonal. This effect is due to the energy shift
arising from the coupling process and decreases as the
intensity of the probe beam is decreased. We can compare
our results to the case of an optical beam splitter with an
amplitude squeezed beam input on one port and vacuum
input at the other port. In this case, with r � 2:0,
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FIG. 4. Vinf�X̂
�� (dotted-dashed line), Vinf�X̂

�� (dashed line),
and Vinf�X̂

��Vinf�X̂
�� (solid line) for �23 � 0:75	 108 rad s�1,

and an initial amplitude squeezed optical state with the squeez-
ing parameter r � 2:0.
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Vinf�X̂
�� � 2e�2r=�1� e�2r� � 0:036, Vinf�X̂

�� � 2e2r=
�1� e2r� � 1:96, and Vinf�X̂

��Vinf�X̂
�� � 4=�2� e2r �

er � e�2r� � 0:071. These compare quite well to the
values which correspond to maximum entanglement
in our system Vinf�X̂

�� � 0:048, Vinf�X̂
�� � 1:83, and

Vinf�X̂
��Vinf�X̂

�� � 0:085, indicating that our system be-
haves almost as an ideal beam splitter.

Experimental considerations.—For optimal squeezing
in the atomic beam, the quantum efficiency of the out-
coupling (i.e., the number of outcoupled atoms per probe
beam photon passing through the condensate) must ap-
proach one, and for optimal entanglement between the
probe beam and the atom laser beam, we require the
quantum efficiency to be one-half. The parameter that
governs the efficiency of the quantum state transfer is the
effective Rabi frequency �eff � �g13��23=��

R
�1�x�dx.

Optimum quantum state transfer occurs when the time
taken to leave the condensate is approximately equal to a

quarter period Rabi oscillation, i.e., �eff �
�������������������
m!trap=@

q
	


�@jk0 � kpj��=2m�. For the parameters used in our simu-
lations, this gives �23 � 1:6	 108 rad s�1. We choose a
large detuning in order to reduce the effects of spontaneous
emission. For 87Rb at this detuning, this Rabi frequency
translates to an intensity of approximately 50 mW cm�2.
To obtain the appropriate atom-light coupling coefficient
g13, we assumed that the probe beam was focused to a
waist of 100 �m.

The most stringent requirement on the experiment
will be on the intensity of the probe beam. This will have
to be very weak in order to maintain high quantum effi-
ciency in the outcoupling without saturating the con-
densate. To meet this requirement, the total number of
photons in the experiment will have to be less than the
number of atoms in the condensate. The photon flux from a
squeezed vacuum is Fphoton � B sinh2r, where B is the
bandwidth of the transition in which we are interested.
The bandwidth of a Raman transition when used to out-
couple an atom laser, however, is just the inverse of the
drain time of the condensate B � 1=�drain [15]. The con-
dition that the total number of photons be less than the total
number of atoms in the condensate gives us Natoms �

Nphotons � Fphoton�drain � sinh2r, which is easily satisfied
for experimentally achievable squeezing. Because the
bandwidth of the atom laser transition is so narrow
(�kHz), however, in order to transfer squeezing to the
outcoupled atoms, squeezing at low frequencies will be
needed. Optical squeezing down to 100 Hz has recently
been achieved by McKenzie et al. [16]. High frequency
squeezing can be thought of as entanglement between
13360
photons at frequencies on either side of a carrier beam. It
may be possible to use high frequency squeezing to obtain
atom-light entanglement in an atom laser by making the
sidebands on one side of the carrier resonant with the atom
laser transition and observing entanglement between the
atom laser and the photons at the other frequency.
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