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Thermal Spectral Functions of Strongly Coupled N � 4 Supersymmetric Yang-Mills Theory
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We use the gauge-gravity duality conjecture to compute spectral functions of the stress-energy tensor in
finite-temperature N � 4 supersymmetric Yang-Mills theory in the limit of large Nc and large ’t Hooft
coupling. The spectral functions exhibit peaks characteristic of hydrodynamic modes at small frequency,
and oscillations at intermediate frequency. The nonperturbative spectral functions differ qualitatively from
those obtained in perturbation theory. The results may prove useful for lattice studies of transport
processes in thermal gauge theories.
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Introduction.—Theoretical analysis of the properties of
strongly interacting hot and dense matter is a hard problem.
Even when the density of baryons in thermal equilibrium is
negligible, perturbative QCD calculations are only reliable
at temperatures which are much higher than the tempera-
ture of the deconfinement transition [1]. While lattice
simulations can provide an account of equilibrium thermo-
dynamic properties of the theory, questions involving real-
time dynamics such as momentum transport, thermaliza-
tion, and various production rates are much harder to
answer. For near-equilibrium states, physical information
is contained in equilibrium response functions: for ex-
ample, the dilepton rate is proportional to the spectral
function of vector currents, and the viscosities are deter-
mined by the spectral function of the relevant components
of the stress-energy tensor.

Thus it is valuable to study models where analytic
results for the real-time response functions can be derived.
A number of recent studies focused on a particular model,
the N � 4 supersymmetric SU�Nc� Yang-Mills (SYM)
theory at finite temperature. The interest in this theory is
due to Maldacena’s gauge-string duality conjecture [2]
which provides an effective description of the theory’s
nonperturbative regime in terms of semiclassical gravity
in a five-dimensional asymptotically anti-de Sitter (AdS)
space.

The SYM theory is conformal, and has only one tunable
parameter, the ’t Hooft coupling �. Thermal equilibrium is
characterized by the blackbody equation of state at any
nonzero temperature, and cannot (at large ’t Hooft cou-
pling) be viewed as a gas of weakly interacting quasipar-
ticles. The standard hydrodynamic singularities in two-
point functions of conserved currents in SYM theory
were found from the dual gravity description in the limit
of large � and large Nc [3,4]. The ratio of the shear
viscosity to volume entropy density in this theory has
been found to be �=s � 1=4� [5,6], which is a much
06=96(13)=131601(4)$23.00 13160
smaller number than the corresponding result in a weakly
coupled gauge theory.

In this Letter, we focus on the full spectral functions
(rather than their small-frequency limit) of the stress-
energy tensor in the SYM theory at large ’t Hooft cou-
pling and large Nc. The knowledge of the full spectral
function is important for two reasons. On the one hand,
our results provide the first example of a nonperturbative
spectral function calculation in a strongly coupled four-
dimensional gauge theory at finite temperature, obtained
without performing lattice simulations. On the other hand,
the nonperturbative spectral functions of SYM theory may
be useful for lattice computations of transport coefficients
in realistic gauge theories at temperatures not too far from
the deconfinement transition. Indeed, a Euclidean correla-
tion function (computed on the lattice) is proportional to
the integral of the real-time spectral function over all
frequencies. In the simplest method of reconstructing the
spectral function from the Euclidean data, one first as-
sumes an ansatz for the spectral function, and then fits
the parameters of the ansatz to the lattice data [7]. This
method has been applied to the computation of the shear
viscosity in QCD [8]. Theoretical understanding of what
the correct nonperturbative ansatz might be is of primary
importance for this approach. Our results for the nonper-
turbative spectral functions of SYM theory may therefore
prove useful for lattice studies of transport processes in
thermal gauge theories.

Correlation functions from gauge-gravity duality.—The
spectral function ���;���k� is defined as

���;���k� �
Z
d4xe�ikxh�T���x�; T���0��i: (1)

It is proportional to the imaginary part of the retarded
Green’s function, ���;���k� � �2 ImG��;���k�, where

G��;���k� � �i
Z
d4xe�ikx	�x0�h�T���x�; T���0��i; (2)
1-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.131601


PRL 96, 131601 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
7 APRIL 2006
and is an odd, real function of k. The shear and bulk
viscosities are proportional to the zero-frequency slope
of the specific components of the spectral function, for
example,

� � lim
k0!0

1

2k0 �xy;xy�k
0; k � 0�: (3)

The retarded correlation function of the stress-energy ten-
sor of SYM theory admits a simple decomposition (we fol-
low the notational conventions of Ref. [9]). At zero tem-
perature, Lorentz symmetry combined with conservation
and tracelessness of T�� implies that G��;���k� has the
form

G��;���k� � H��;��GS�k2�;

where H��;�� �
1
2 �P��P�� � P��P��� �

1
3P��P�� is a

projector onto conserved traceless symmetric tensors,
P�� � ��� � k�k�=k2, and k2 � ��k0�2 � k2. At non-
zero temperature, G��;�� in a conformal theory can be
described by three symmetry channels

G��;���k� � S��;��G1 �Q��;��G2 � L��;��G3; (4)

where S��;��, Q��;��, and L��;�� are the appropriate
orthogonal projectors which provide three independent
Lorentz index structures [9]. Choosing the spatial momen-
tum along x3, k� � ��!; 0; 0; q�, the components of the
correlation function are

Gtx1;tx1�k� �
1

2

q2

!2 � q2 G1�!; q�; (5a)

Gtt;tt�k� �
2

3

q4

�!2 � q2�2
G2�!; q�; (5b)

Gx1x2;x1x2�k� �
1

2
G3�!; q�; (5c)

with all other related to the above by the rotation invari-
ance. As a function of complex !, in the low-frequency
limit, G1�!; q� has a shear-mode singularity, G2�!; q� has
a sound-mode singularity, and G3�!; q� has no hydrody-
namic singularities. In the limit of vanishing 3-momentum,
G1�!� � G2�!� � G3�!�. At zero temperature, G1 �
G2 � G3 � GS.

In the regime of large ’t Hooft coupling, the three scalar
functions Ga�!; q� can be computed using the gauge-
gravity duality recipe [9,10]. The duality essentially re-
duces the computation of a two-point correlation function
to a boundary-value problem for a linear ordinary differ-
ential equation. For the zero-temperature theory, the re-
tarded two-point function can be found, for example, in
[10] (at zero temperature, the dual gravity result for the
correlator in strongly coupled N � 4 SYM theory coin-
cides with the one obtained in free field theory, due to a
nonrenormalization theorem [11]),
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GS�k� �
N2

ck4

32�2 �lnjk
2j � i�	��k2� sign!�: (6)

In order to compute the retarded correlators at nonzero
temperature, one has to analyze the ‘‘wave equations’’ (one
for each symmetry channel) which describe propagation of
the corresponding metric perturbations in the AdS-
Schwarzschild background spacetime of the dual descrip-
tion. The differential equations are of the form

d2

du2
Za�u� � pa�u�

d
du
Za�u� � qa�u�Za�u� � 0; (7)

where the coefficients pa�u�, qa�u� [to be specified shortly]
depend on the dimensionless frequency w � !=2�T and
momentum q � q=2�T, and a � 1; 2; 3 labels the three
symmetry channels. The coordinate u ranges from 0 to 1,
where u � 0 corresponds to the boundary of the asymptoti-
cally AdS spacetime, and u � 1 corresponds to the event
horizon of the background.

For all three Eqs. (7), the characteristic exponents at u �
0 are equal to 0 and 2, and the exponents at u � 1 are
	iw=2. Information about the retarded correlation func-
tion is encoded in the solutions to Eq. (7) which satisfy the
incoming-wave condition at the horizon, corresponding to
the exponent�iw=2 at u � 1. The correct solution is thus
of the form Za�u� � �1� u��iw=2Fa�u�, where Fa�u� is a
regular function at the horizon. The solution satisfying the
incoming-wave condition at the horizon can be written as a
linear combination of two independent local solutions at
u � 0,

Za�u� �AaZ
I
a�u� �BaZ

II
a �u�; (8)

where ZI
a�u� and ZII

a �u� are given by their standard
Frobenius expansions [12] as

ZI
a � 1� b�1�aI u� haZ

II
a �u� lnu� b

�2�
aI u

2 � 
 
 
 ; (9)

ZII
a � u2�1� b�1�aIIu� b

�2�
aIIu

2 � 
 
 
�: (10)

All the coefficients b�j�aI;II (except b�2�aI ) and ha are deter-
mined by the recursion relations obtained by substituting
the above expansion in the differential Eq. (7). The coef-
ficient b�2�aI is left as a free parameter, reflecting the fact that
one can always redefine the local solutions by adding a
constant multiple of ZII

a �u� to ZI
a�u�. Without loss of gen-

erality, we set b�2�aI � 0 thus fixing the definition of ZI;II
a �u�.

The retarded functions Ga are then given by [13],

Ga�!; q� � ��
2N2

cT
4 Ba�!; q�
Aa�!; q�

: (11)

As is evident from Eqs. (9) and (10), the coefficient A is
given by the boundary value of the solution, Aa �
limu!0Za�u�, while the coefficient B can be expressed in
1-2
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FIG. 1. The finite-temperature part of the spectral function for
transverse stress ��xy;xy � �T�0

xy;xy�=w, plotted in units of �2N2
cT4

as a function of dimensionless frequency w � !=2�T. Different
curves correspond to values of the dimensionless spatial mo-
mentum q � q=2�T equal to 0, 0.6, 1.0, and 1.5.
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terms of the boundary value of the second derivative of the
solution,

B a �
1

2
lim
u!0
�Z00a�u� � 2Aaha ln�u�� �

3

2
Aaha: (12)

From the recursion relations one determines ha � �
1
2 �

�q2 �w2�2, which is an analytic function of w and q, and
therefore represents a contact term which we drop. The
retarded correlator is therefore equal to

Ga � ��2N2
cT4lim

u!0

�
Z00a�u�
2Za�u�

� ha ln�u�
�
: (13)

Spectral functions of the stress-energy tensor.—In order
to determine the spectral function for transverse stress, we
need to solve the master Eq. (7) whose coefficients are
given by [10]

p3�u� � �
1� u2

uf
; q3�u� �

w2 � q2f

uf2 ; (14)

where f � 1� u2. Solving Eq. (7) numerically, we find
�xy;xy�!; q� as explained in the previous section. The spec-
tral function is linear in w for small frequencies, �xy;xy �
�w=2��2N2

cT4�1�O�w2; q2��, then increases monotoni-
cally, and at large frequencies it asymptotes to the zero-
temperature result �T�0

xy;xy �
�
2 �q

2 �w2�2�2N2
cT4	��k2�.

When this zero-temperature contribution is subtracted,
the resulting function exhibits oscillations which damp
rapidly as frequency grows. The oscillations appear around
! � q, and their amplitude grows with q. The unsub-
tracted �xy;xy is positive, as it should be. Figure 1 shows
graphs of �xy;xy for several values of three-momentum. The
numerical procedure outlined above allows one to compute
both real and imaginary parts of G��;��. The real part
which can in principle be reconstructed from the spectral
function, also exhibits oscillations which damp as fre-
quency grows [14]. The shear viscosity follows from the
13160
Kubo formula (3), � � �N2
cT

3=8, and is in agreement
with the earlier results [5,6].

In the shear channel, the coefficients of the master
Eq. (7) are given by [9]

p1�u� �
�w2 � q2f�f� 2u2w2

uf�q2f�w2�
; q1�u� �

w2 � q2f

uf2 :

(15)

The spectral function �tx;tx�!; q� is shown in Fig. 2. At
small momentum, the spectral function exhibits a narrow
peak at w � q2=2, characteristic of the hydrodynamic
shear mode.

In the sound channel, the coefficients of the master
Eq. (7) are given by [9]

p2�u� � �
3w2�1� u2� � q2�2u2 � 3u4 � 3�

uf�3w2 � q2�u2 � 3��
; (16)
q2�u� �
3w4 � q4�3� 4u2 � u4� � q2�4u2w2 � 6w2 � 4u3f�

uf2�3w2 � q2�u2 � 3��
: (17)
The spectral function �tt;tt�!; q� is shown in Fig. 2. At
small momenta, the spectral function exhibits a narrow
peak at w � q=

���
3
p

, characteristic of the hydrodynamic
sound mode. For both �tx;tx and �tt;tt, the finite-
temperature contributions have oscillatory behavior, simi-
lar to the one seen in �xy;xy.

Discussion.—It is easy to understand the limiting be-
havior of the spectral functions found above. The !, q
dependence at small frequency is predicted by the linear-
ized hydrodynamics, while the large! dependence is fixed
by the scale invariance of the SYM theory. An intriguing
feature is the presence of oscillations in the finite-
temperature contribution, which appear around ! � q,
and then decay rapidly. Mathematically, such damped
oscillations are due to the characteristic asymptotic behav-
ior, � exp���w�, of the solutions to Eq. (7), where � is a
complex number [10,15]. They reflect the presence of an
infinite sequence of poles in the lower half-plane of the
retarded correlators [9].

One can compare the spectral functions of the strongly
coupled SYM theory with the perturbative results in a
weakly coupled scalar or pure gauge theory discussed in
Ref. [16]. At weak coupling, the spectral function for
transverse stress at q � 0 grows linearly at small fre-
quency, and is proportional to !4 at asymptotically high
frequency. In between, however, there is a range where the
1-3



FIG. 2. Left: spectral function for transverse momentum density, �tx;tx, plotted in units of �2N2
cT4, as a function of dimensionless

frequency w � !=2�T. Different curves correspond to values of the dimensionless spatial momentum q � q=2�T equal to 0.3, 0.6,
1.0, and 1.5. At large w, the curves asymptote to the zero-temperature result �2 q2�w2 � q2�. Right: spectral function for energy density,
�tt;tt, plotted in units of �2N2

cT
4, as a function of dimensionless frequency w � !=2�T. Different curves correspond to values of the

dimensionless spatial momentum q � q=2�T equal to 0.3, 0.6, 1.0, and 1.5. At large w, the curves asymptote to the zero-temperature
result �2 4q4=3.
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spectral function decreases as 1=!. This behavior at inter-
mediate frequencies at weak coupling differs from what
one observes in the strongly coupled SYM theory, where
the spectral function grows monotonically for all !. Based
on the numerical results for ���;���!; q�, one may propose
the following ansatz for the zero-momemtum spectral
function for transverse stress

�xy;xy�!� � �T�0
xy;xy�!� � Im

X
i

cie
��i!; (18)

where ci, are real coefficients, and Re��i�> 0 (assuming
positive frequency).

In this Letter, we computed the spectral functions in the
simplest thermal gauge theory with a known gravity dual.
It should also be feasible to find spectral functions for a
class of nonconformal gauge theories, such as the one
analyzed in Ref. [17].
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the same subject by D. Teaney [18].
*Electronic address: kovtun@kitp.ucsb.edu
†Electronic address: starina@perimeterinstitute.ca

[1] See, for example, P. Arnold, Int. J. Mod. Phys. A 16S1A,
65 (2001); L. G. Yaffe, Nucl. Phys. B, Proc. Suppl. 106,
117 (2002); R. D. Pisarski, hep-ph/0203271, and referen-
ces therein.
13160
[2] For a review, see O. Aharony, S. S. Gubser, J. M.
Maldacena, H. Ooguri, and Y. Oz, Phys. Rep. 323, 183
(2000), and references therein.

[3] G. Policastro, D. T. Son, and A. O. Starinets, J. High
Energy Phys. 09 (2002) 043.

[4] G. Policastro, D. T. Son, and A. O. Starinets, J. High
Energy Phys. 12 (2002) 054.

[5] G. Policastro, D. T. Son, and A. O. Starinets, Phys. Rev.
Lett. 87, 081601 (2001).

[6] P. Kovtun, D. T. Son, and A. O. Starinets, Phys. Rev. Lett.
94, 111601 (2005).

[7] F. Karsch and H. W. Wyld, Phys. Rev. D 35, 2518 (1987).
[8] A. Nakamura and S. Sakai, Phys. Rev. Lett. 94, 072305

(2005).
[9] P. Kovtun and A. Starinets, Phys. Rev. D 72, 086009

(2005).
[10] D. T. Son and A. O. Starinets, J. High Energy Phys. 09

(2002) 042.
[11] S. S. Gubser and I. R. Klebanov, Phys. Lett. B 413, 41

(1997).
[12] See, for example, C. M. Bender and S. A. Orszag,

Advanced Mathematical Methods for Scientists and
Engineers (Springer, New York, 1999).

[13] The real parts of the correlator in the shear and sound
channels have additional contributions arising from writ-
ing the gravitational action in terms of the gauge-invariant
variables [9]. These terms are irrelevant for the present
discussion.

[14] S. A. Hartnoll and S. Prem Kumar, J. High Energy Phys.
12 (2005) 036.

[15] G. Policastro and A. Starinets, Nucl. Phys. B610, 117
(2001).

[16] G. Aarts and J. M. Martinez Resco, J. High Energy Phys.
04 (2002) 053.

[17] P. Benincasa, A. Buchel, and A. O. Starinets, Nucl. Phys.
B733, 160 (2006).

[18] D. Teaney, hep-ph/0602044.
1-4


