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Entropic Transport: Kinetics, Scaling, and Control Mechanisms
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We show that transport in the presence of entropic barriers exhibits peculiar characteristics which
makes it distinctly different from that occurring through energy barriers. The constrained dynamics yields
a scaling regime for the particle current and the diffusion coefficient in terms of the ratio between the work
done to the particles and available thermal energy. This interesting property, genuine to the entropic nature
of the barriers, can be utilized to effectively control transport through quasi-one-dimensional structures in
which irregularities or tortuosity of the boundaries cause entropic effects. The accuracy of the kinetic
description has been corroborated by simulations. Applications to different dynamic situations involving
entropic barriers are outlined.
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FIG. 1. Schematic diagram of the tube confining the motion of
the biased Brownian particles. The half-width ! is a periodic
function of x with periodicity L.
Transport through quasi-one-dimensional structures as
pores, ion channels, and zeolites is ubiquitous in biological
and physicochemical systems and constitute a basic
mechanism in processes as catalysis, osmosis, and particle
separation [1–6]. A common characteristic of these sys-
tems is the confinement arising from the presence of
boundaries which very often exhibit an irregular geometry.
Variations of the shape of the structure along the propaga-
tion direction implies changes in the number of accessible
states of the particles. Consequently, entropy is spatially
varying, and the system evolves through entropic barriers,
which controls the transport, promoting or hampering the
transfer of mass and energy to certain regions. Motion in
the system can be induced by the presence of external driv-
ing forces supplying the particles with the energy neces-
sary to proceed. The study of the kinetics of the entropic
transport, the properties of transport coefficients in far
from equilibrium situations, and the possibility for trans-
port control mechanisms are objectives of major impor-
tance in the dynamical characterization of those systems.

Our purpose in this Letter is to demonstrate that entropic
transport exhibits striking features, sometimes counterin-
tuitive, which are different from those observed in the more
familiar case with energy barriers [7]. We propose a gen-
eral scenario describing the dynamics through entropic
barriers and show the existence of a scaling regime for
the current of particles and the effective diffusion coeffi-
cient. The presence of this regime might have important
implications in the control of transport.

Entropic transport.—The origin of the entropic barriers
can be inherent to the intimate nature of the system or may
emerge as a consequence of a coarsening of the description
employed. A typical example presents the motion of a
Brownian particle in an enclosure of varying cross section.
This basic situation constitutes the starting point in the
study of transport processes in the type of confined systems
that are very often encountered at subcellular level, nano-
porous materials, and in microfluidic applications. As
shown in Ref. [8], the complicated boundary conditions
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of the diffusion equation in irregular channels can be
greatly simplified by introducing an entropic potential
that accounts for the reduced space accessible for the
diffusion of the Brownian particle. The resulting kinetic
equation describing the evolution of the probability distri-
bution is known as the Fick-Jacobs equation [8,9] and
constitutes an approximation to the full dynamics. The
validity of that equation has only been analyzed for diffu-
sion in the absence of a driving force in whose case many
of the transport processes previously mentioned could not
take place. This is so, since thermal diffusion alone may
not be able to induce transitions of the particles through the
entropic barrier.

In typical transport processes through pores or channels,
motion of the suspended particles is induced by application
of an external driving force F that is directed along their
axis. The over-damped dynamics of a biased Brownian
particle within the tube (see Fig. 1) then reads:
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� ~F�

������������
�kBT
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where � is the friction coefficient of the particle, kB the
Boltzmann constant, T the temperature, F � j ~Fj a constant
force in x direction, and ~��t� is Gaussian white noise
with zero mean and correlation function: h�i�t��j�t0�i �
2�ij��t� t0� for i; j � x; y; z. The reflecting boundary con-
ditions ensure the confinement of the dynamics within the
tube.
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Reduction of the dimensionality.—As mentioned previ-
ously, the dynamics of the particles along the axis of the 3D
tube or a 2D channel (see Fig. 1) can be recast into the
Fick-Jacobs equation; i.e.,
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obtained from the 3D (or 2D) Smoluchowski equation after
elimination of y and z coordinates by assuming equilibrium
in the orthogonal directions. Here P�x; t� is the probability
distribution function, D0 the diffusion coefficient, and s�x�
is the cross-sectional area for a (3D) tube or the width for a
(2D) channel. This description is in principle valid for
j!0�x�j � 1, where !�x� is the radius of the tube (or the
half-width of the channel in 2D) and the prime refers to the
first derivative. It has been shown that the introduction of a
x-dependent diffusion coefficient considerably improves
the accuracy of the kinetic equation extending its validity
to more winding structures [8,10]. The expression

D�x� �
D0

�1�!0�x�2��
; (3)

where D0 � kBT=� and � � 1=3; 1=2 for two and three
dimensions, respectively, was shown to appropriately ac-
count for the curvature effects [10].

In the presence of a constant force F along the direction
of the tube the Fick-Jacobs equation can be recast into the
following expression [10]
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which defines a free energy A�x� :� E� TS �
�Fx� TkB lnh�x�, where E � �Fx is the energy, S �
kB lnh�x� the entropy, h�x� the dimensionless width
2!�x�=L in 2D, and the dimensionless transverse cross
section ��!�x�=L�2 of the tube in 3D. For a symmetric
channel with periodicity L, the free energy assumes the
form of a periodic tilted potential.

Universal scaling for the particle current and effective
diffusion.—The key quantities in transport through quasi-
one-dimensional structures are the average particle current,
or equivalently the nonlinear mobility, and the effective
diffusion coefficient. While in the case of an energy barrier,
the driving force F and the temperature T are two inde-
pendent variables, for entropic transport, both current and
effective diffusion are controlled by a universal scaling
parameter:

f :�
FL
kBT

: (5)

For the average particle current and the nonlinear mobility
��f� we find an expression similar to the Stratonovich
formula [11]
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where
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depends only on the dimensionless variable z � x=L, the
scaling parameter f, and the shape of the tube given in
terms of the dimensionless half-width !̂�z� :� w�x�=L and
its first derivative. Here ĥ�z� :� h�x�.

The effective diffusion coefficient could be expressed in
terms of moments of the first passage time for a Brownian
particle arriving at x0 � L while starting out from x0 [11].
A detailed analysis shows that the effective diffusion co-
efficient also scales with FL=kBT as:
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Numerical simulations.—A model of a 2D periodic
channel is sketched in Fig. 1; the shape is described by
!�x� � a sin�2�x=L� � b. Here, a is the parameter that
controls the slope of the walls, the width of the channel is
2!�x�, and the width at the bottleneck is 2�b� a�.

The scaling behaviors, predicted above, have been cor-
roborated by Brownian dynamic simulations performed by
integration of the dimensionless Langevin equation, which
is equivalent to Eq. (1), within the stochastic Euler algo-
rithm. Therefore, lengths are scaled by the periodicity L of
the tube, time by � :� L2�=�kBTroom�—the corresponding
characteristic diffusion time at room temperature Troom —
and the force by F0 :� �L=�. The mean velocity in x
direction, h _xi � limt!1x�t�=t, and the corresponding ef-
fective diffusion coefficient, Deff � 1=2limt!1�hx

2�t�i �
hx�t�i2�=t, are obtained as an average over 3 
 104

trajectories.
Results for the particle current and the effective diffu-

sion coefficient as a function of the applied force for the
case a � 1=�2��, b � 1:02=�2��, and L � 1 are presented
in Fig. 2 and Fig. 3 for different values of the noise strength
(i.e., the temperature). The particle current increases
monotonically with the force, but decreases upon increas-
ing the level of noise. The effective diffusion coefficient
exhibits a nonmonotonic behavior with the appearance of a
peak which becomes more pronounced at low noise levels
(see Fig. 3). When both quantities are represented as a
function of the scaling parameter f (see Figs. 4 and 5) all
curves collapse to the scaled solution which evidences the
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FIG. 4. Graph for the scaled nonlinear mobility. In the
Langevin simulation the different symbols correspond to differ-
ent values of T=Troom: 0.01 (crosses), 0.1 (pluses), 0.2 (squares),
0.4 (triangles). The relative error of the simulation results is 0.01.
The Fick-Jacobs results, Eq. (6), correspond to the solid lines.
The inset depicts the long range behavior (the dotted line depicts
the numerical results). The numerical values for the scaled
nonlinear mobility approach, in the limit f ! 1, to the value
1 (dashed horizontal line).

FIG. 2. Numerically determined force dependence of particle
current for a symmetric two-dimensional channel with the shape
defined by the half-width !�x� � �sin�2�x=L� � 1:02�=�2��,
L � 1, and for the values of T=Troom: 0.01 (solid line),
0.1 (dashed line), 0.2 (dotted line), and 0.4 (dash-dotted line).
The inset depicts the dependence of the particle current h _xi=
�L=�� on the dimensionless temperature T=Troom for the force
value: F=F0 � 0:628. Contrary to the case of energetic barriers,
the particle current declines with increasing temperature.
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excellent agreement of simulations results with the scaling
behavior predicted for those quantities. Therefore, whereas
in the case of transport through energetic barriers the force
(or tilt) and the temperature are two independent parame-
ters, the entropic transport is controlled by a single pa-
rameter f. Another important result shown in Fig. 3 is the
presence of a peak in the diffusion and the fact that the
effective diffusion can be much larger than bulk diffusion.
Thus the phenomenon of enhancement of the diffusion,
linked to the dynamics of particles in periodic tilted ener-
getic potentials, also takes place when barriers hindering
the transport have an entropic nature.

In Figs. 4 and 5 we have also represented the nonlinear
mobility and effective diffusion coefficient predicted by
Eqs. (6) and (7) obtained from the Fick-Jacobs equation. At
FIG. 3. The effective diffusion coefficient vs the external bias.
The parameters for the various lines correspond to those detailed
in Fig. 2. The inset depicts the effective diffusion coefficient
Deff=�L

2=�� vs dimensionless temperature T=Troom.
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low values of the scaling variable f the results match
perfectly with the simulations whereas deviations occur
at higher values of f. The scaled nonlinear mobility and the
effective diffusion coefficient approximates for f ! 1
values different from the value 1. The accuracy of the
Fick-Jacobs description worsens at large f because the
assumption of equilibration in the transverse direction,
which supports the elimination of the y; z coordinates, fails
at high values of the applied force. The agreement sub-
stantially improves when the shape of the tube does not
change too fast, i.e., when j!0�x�j is smaller, which can be
achieved for instance by increasing the period L of the
FIG. 5. Same as in Fig. 4, but for the effective diffusion
coefficient. The relative error of the simulation results is 0.1.
The Fick-Jacobs results, Eq. (7), correspond to the solid lines.
The inset depicts the long range behavior (the dotted line depicts
the numerical results). The numerical values for the scaled
nonlinear mobility approach, in the limit f ! 1, to the value
1 (dashed horizontal line).
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shape oscillations of the channel. In situations where the
roughness of the channel is not very extreme, the Fick-
Jacobs description provides a very good approximation to
the transport for values of the external work of some tens of
kBT’s. In fact, that is the range of energies relevant to most
transport processes in biological systems.

The peculiar behavior of the particle current and effec-
tive diffusion coefficient as a function of temperature is
depicted in the insets of Figs. 2 and 3. Contrary to the case
of an energetic barrier, the particle current decreases upon
increasing the temperature. In the presence of energetic
barriers, the temperature facilitates the activation (the over-
coming of the barriers) and thus tends to increase the
particle current. However, when transport is controlled by
entropic factors, the temperature dictates the strength of
the entropic potential, and thus an increase of temperature
leads to a reduction of the particle current. The effective
diffusion coefficient as a function of the temperature also
manifests a striking behavior with the presence of a peak,
and the existence of a range of temperatures where the
effective diffusion coefficient decreases upon increasing
the temperature. It is important to remark that, since the
transport characteristics scale as FL=kBT, the peculiar
regimes can be obtained not only by changing the tem-
perature but also by modifying the strength of the force.

Applications.—An example in which the entropic nature
of the transport becomes more evident is the case of micro
and nanoporous materials, such as zeolites. These materi-
als have a regular structure with channels of different width
and well-defined geometry. This peculiar structure confers
them an outstanding ability to act as molecular sieves, that
is currently exploited in chemically clean separation of
mixtures, ion exchange, and petrochemical cracking.
Driven by their economic and scientific importance, these
materials have been studied extensively experimentally
and more recently by computer simulations. For instance,
the diffusion has been found to decrease with temperature
in some range of temperatures [12]; and the existence of an
optimal value of the diffusion as a function of the tempera-
ture has also been observed [13]. In fact, the dependence of
the effective diffusion coefficient on temperature reported
in Ref. [13] behaves just as the one predicted here with
Fig. 3. Finally, values of diffusion coefficients higher than
the bulk, consistent with the phenomenon of diffusion
enhancement predicted by our model, have also been re-
ported [14]. Our simple model thus accounts for all these
behaviors and shows that they are not specific of a particu-
lar zeolite structure but they arise from the entropic nature
of the transport.

Conclusions.—In summary, we have shown that trans-
port phenomena in systems in the presence of entropic
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barriers exhibit some features radically different from con-
ventional transport through energetic barriers. The effect of
confinement can be recast in terms of an entropic potential,
and the dynamics of the system can be accurately described
by means of the Fick-Jacobs equation. We have shown the
existence of a scaling regime in the dynamics. The particle
current and the effective diffusion coefficient are con-
trolled by a single parameter f that measures the relative
importance of the external work done to the particle and
the thermal energy. The scaling in f thus opens up the
possibility of tuning and controlling the efficiency of trans-
port in confined systems by a proper combination of tem-
perature and applied field. In situations in which the
temperature can only be varied in a very limited range,
as frequently occurs in biological systems, the existence of
scaling implies that the same transport regime can be
accomplished by the application of an external force. The
analysis presented could be applied to a wide variety of
situations, such as biological transport through ion chan-
nels and membrane pores, or the portage in molecular
sieves or polymer gels, where entropic effects play a very
important role.
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