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Interference effects are important for swimming of mesoscopic systems that are small relative to the
coherence length of the surrounding quantum medium. Swimming is geometric for slow swimmers and
the distance covered in each stroke is determined, explicitly, in terms of the on-shell scattering matrix.
Remarkably, for a one-dimensional Fermi gas at zero temperature we find that slow swimming is
topological: the swimming distance covered in one stroke is quantized in half integer multiples of the
Fermi wavelength. In addition, a careful choice of the swimming stroke can eliminate dissipation.
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The theory of classical swimming studies how a cyclic
change in the shape of a swimmer immersed in a fluid leads
to a change in its location. The theory is both elegant and
practical [1,2] and has been applied to the swimming and
flying of organisms, robots [3], and microbots [4,5].

A classical medium may be viewed as a limiting case of
quantum medium when the quantum coherence length is
small compared to the size of the swimmer and interfer-
ence is negligible. Quantum mechanics takes over once the
swimmer is small enough. When this is the case, interfer-
ence effects may significantly affect the swimming. We
shall focus on the case of slow (adiabatic) swimmers,
where the theory turns out to be geometric. In the theory
the swimmer is viewed as a (time-dependent) scatterer and
the main result is a formula for the swimming distance in
one swimming stroke in terms of the on-shell scattering
matrix. This point of view also gives a different perspective
on the issue of quantum friction [6,7].

It may be instructive to explain the difference between
geometrical and nongeometrical modes of swimming. In
general, nonadiabatic swimmers move by transferring mo-
mentum to the ambient medium. For example, a swimmer
may emit photons, or electron-hole pairs that carry mo-
mentum and accelerate the swimmer. Using such a mecha-
nism it is possible to swim in vacuum, e.g., using the
dynamic Casimir effect [8]. This mode of locomotion is
effective for swift swimmers. Adiabatic or geometric
swimmers, in contrast, swim without transferring momen-
tum to the ambient medium [1] (this shall be further
discussed below). In particular, the swimmers that we
consider do not swim by emitting quanta (e.g., photons)
that propel them.

We focus on swimming in a one-dimensional ideal
Fermi gas at low temperatures where interference effects
are especially strong. This situation leads to a remarkable
quantization of the swimming distance. At the same time,
our methods are more general and can be also applied to
Bose gas and finite temperature and also to swimming in
three dimensions.

Let us now turn to a more precise description of the
setting. The swimmer, a ¢ swimmer, is an object with
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internal degrees of freedom which, we assume, are slow
and classical while the degrees of freedom of the medium
are fast and quantum. Swimming is accomplished by the
internal degrees of freedom, the controls, undergoing pe-
riodic cycles. An example of a ¢ swimmer might be a
molecule immersed in a quantum gas. The control of the
internal configuration might be either external or internal
(due to autonomous dynamics). As we shall see, there is as
intimate connection between quantum pumps [9] and ¢
swimming.

Consider a simple model of a swimmer made of n
disconnected spheres of radii a; immersed in either a
classical or quantum medium. The swimmer can control
the n — 1 relative distances ¢, = X; — X,,, i=1,...,n —
1 between the centers X; of the spheres and the radii a;.
Allow the swimmer to change adiabatically the control
parameters a; and €;. The notion of adiabaticity means
that the velocities, e.g., X j»aj, are small compared with the
characteristic velocities of the particles in the medium. By
linear response, the force on the jth sphere is given by

fi= _ankxk - Zijdk + ZFf"’ M
k k k

Here F;; = —F}; are internal forces acting between i and j
spheres and 7, vj; are coefficients, which, a priori, de-
pend on the state of the swimmer (i.e., the relative dis-
tances €; and the radii of the spheres a;) and the nature of
the medium.

To derive an explicit form of the swimming equation one
first needs to make a choice how to designate the position
of the swimmer, X. For a swimmer made of n disconnected
pieces it is convenient to pick X = X,,, the coordinate of
one of the components. The total force }’;f; acting on an

t r

- —
B —

¢

v

FIG. 1. A scatterer with two scattering channels: (r, ) and
(r', ') are the reflection and transmission amplitudes.
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adiabatic swimmer must vanish. (This follows from the
fact that the friction forces are of first order in the adiaba-
ticity while the acceleration is second order.) This con-
straint determines the swimming equation

n—1 n
i=1 j=1

where my = S Mo 1= S W = S e
Swimming is manifestly geometric being independent of
the (time) parametrization of the swimming stroke. The
notation dX stresses that the position of the swimmer will,
in general, not integrate to a function on the space of
controls: X will not return to its original values when the
controls undergo a cycle.

Equation (2) does not determine the coefficients 7;, v,
and 7. In this sense, the swimming equation, although
general, is incomplete. We start by deriving a new formula
for the quantum friction 1 [10]. n expresses the friction
acting on an idle ¢ swimmer while it is being dragged at
small velocity through the ambient quantum medium. The
formula is in the spirit of Landauer formula [11,12]; it is
expressed in terms of the scattering data. As usual in the
Landauer setting we assume a one-dimensional system.
For the sake of simplicity, we focus on the two channel
case (see Fig. 1).

The most general on-shell scattering matrix of a one-
dimensional time-reversal invariant scatterer anchored at
the origin can be parametrized as follows [13]:

t [ isin@ e ®cosf
= = eV .
So < r t ) ¢ ( €'“ cosf ) @)

isinf
The reflection r, ¥/ and transmission ¢, ¢ amplitudes are
functions of three independent real parameters: «, v, 6.
The scattering matrix of a scatterer located at X is
related to the scattering matrix located at the origin, Sy, by:

S(X) — eiPX/hSoe_iPX/h, 4

where the on-shell momentum matrix P is defined by
1 0
P=r®(y ) 5)

p(E) = \/2mE for electron gas and p(E) = E/c for
photons.

A dragged scatterer may be thought of as a pump. If the
velocity of dragging is small compared with the character-
istic velocity of the scattered particles, the theory of adia-
batic pumps can be applied. In particular, the rate of
momentum transfer to the ambient medium is [14]:

. 1
P(t) = ——— | dEp'(E) Trg[E(E, 1)P], (6)
27h
E(E, 1) = ihSS* is called the energy shift matrix [15]. It

depends on a frozen on-shell scattering matrix and its time
derivative. Here and after S* denotes the Hermitian con-

jugate of S, Trg denotes the trace on the scattering channels
at fixed energy E, and p(E) gives the occupation of the
(scattering) states at energy E. If the ambient quantum gas
is at thermal equilibrium, p(E) = (eFE~#) = 1)~1 is the
Fermi-Dirac or Bose-Einstein distribution.

In dragging a scatterer, the time dependence of § comes
solely from the change of position, X. From Eq. (4) £ =
X[P, SIS*. Equation (6) determines the force f on the
swimmer: f = P.

Define, as usual, the friction coefficient, 5, by f =
—nX. Combined with Eq. (6) we get a Landauer type
formula for the quantum friction

1

I dEp'(E) Trg ([P, SI[P, ST"). (N
Th

n=
At thermal equilibrium p(E) is a decreasing function of the
energy. This implies that 7 is non-negative.

For a Fermi gas at zero temperature p'(E) = —6(E —
Ep). In the two channels case one then has 7y =
2 p*(Ep)|r(EF)|*. The friction depends only on the mo-
mentum and reflection at the Fermi energy, as one expects.
Transparent objects are frictionless.

To derive a ¢ swimming equation and fix the coefficients
of Eq. (2) we make use of the elementary observation that
swimming is dual to pumping. A turning screw can be used
to either pump or swim. The difference lies in the setup: in
a pump the external forces and torques adjust to satisfy the
constraints that the position and orientation of the pump are
fixed while in a swimmer the position and orientation of
the swimmer adjust to satisfy the constraint that there are
no external forces and torques.

Assume that no external forces are applied on a
swimmer which can control its scattering matrix. The
rate of momentum transfer is still given by Eq. (6). Now,
however, the energy shift has two terms: £ = £y + &. The
first £x [given in Eq. (6)] arises from the swimmer’s
change of location, while the second &, = ihSOSS comes
from the swimming stroke.

The total force acting on an adiabatic swimmer must
vanish (to first order). This means that P vanishes and the
equation of motion for g swimmers [16] is:

. 1
nX =-—

2 dEp'(E) Trg(EoP), ®)

where 7 is the friction coefficient, given in Eq. (7) and P is
given in Eq. (5). In the two channels case the trace on the
right-hand side is given by

Tr x(EoP) = hp(E)lr|*Im[d, log(r/r)] ()]

We shall now apply the ¢ swimming equation, Eq. (8), to
swimming in a Fermi gas at zero temperature in one
dimension. This case is both simple and remarkable for,
as we shall see, ¢ swimming turns out to be topological. A
small deformation of the swimming stroke does not affect
the swimming distance which is an integer multiple of the
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Fermi wavelength. This follows immediately from Egs. (8)
and (9) which combine to give:

A A
dX = =L Im[dlog(r/r)] = “E da, (10)
8 dar

where A is the Fermi wavelength. The fact that right-hand
side is an exact differential of the parameter « has two
consequences: first, to swim one must encircle the point
where the scatterer is transparent, r = ' = 0, and second,
the distance covered in a stroke is quantized as a multiple
of Ap/2. The result is general and does not depend on the
specifics of the swimmers.

A swimmer will normally not have direct control on
parameters «. Rather, it will control some physical pa-
rameters that will determine the scattering matrix (see
examples below). Consider a swimmer with two indepen-
dent controls. A stroke is a closed path in the plane of
controls [17]. Since the reflection r is a complex valued
function of the controls, one expects that by adjusting two
controls, one can find points where r = 0. With each such
point of transparency one can associate an (integer) index
that counts how many times r rotates around the origin in
one cycle around the point. We call the index the vorticity.
The swimming distance in a closed stroke is proportional
to the vorticity enclosed by the path.

Let us now consider two examples of topological
swimmers.

Pushmepullyou.—Consider ““a molecule” made of two
scatterers. The scattering matrices associated with each
scatterer have a; = y; = 0 for both scatterers and r; =
cosf,, r, = cosf,. The two scatterers are separated by
distance € (see Fig. 2). The swimmer can control ¢, and
the ratio r;/r,. The total scattering matrix of the swimmer
can then be computed by considering the multiple scatter-
ing processes between the two scatterers. A computation
yields for the zeros of total reflection of r the solutions of:
e?*y — r, = 0. It follows that the vortices occur when
ri = *r, and the distance 2¢€ is an integer (half and
integer) multiple of wavelengths. Since the zeros are sim-
ple the vorticities are *1.

r1/T2

FIG. 2 (color online). The vortex structure, at 7 = 0, of
Pushmepullyou (left) and the three linked spheres (right). The
swimming, in both cases, is topological: the distance covered in
one stroke is proportional to the sum of the vorticities encircled
by the path (the ellipses in the figures). The red (light gray) dots
have vorticity +1 and the blue (dark gray) dots have vorticity
—1.

Three linked spheres.—Consider a swimmer [proposed
by Najafi and Golestanian in [4] in a different context],
made of three identical scatterers on a line, separated by
distances €; and €, (see Fig. 2). Take a; = y; = 0 and
rj = cosf, independent of j = 1,2,3. The swimmer, a
vibrating “trimer,” now controls only the two distances
€., ¢,. The total reflection, r, vanishes provided e’>‘1 +
e 12kt — cog2heK6i=6) — 1 = (. The vortices evidently
occur on a pair of lattices in the plane (¢, £,) (see Fig. 2).
Once again, since the zeros are simple, the vorticities
are *1.

Equations (8) and (10) define a connection dX in the
space of controls. The distance covered by the swimmer in
a one stroke C is then given by AX = [,dX. When there
are only two control parameters (x, y) (as in the examples
above), an application of the Stokes formula gives for the
displacement AX = ([ f(x,y)dxdy, where f(x,y) is the
(scalar) curvature, and the domain of integration has the
boundary C. A plot of the curvature f is often an efficient
way to describe a swimmer (see, e.g., Figs. 3 and 4).

It is instructive to see how topological Fermi swimmers
are affected by temperature. At temperature 7 a region
proportional to 7 near the Fermi energy will contribute to
the integral in Eq. (8). This makes the curvature a smooth
function (rather than a collection of delta functions) on the
space of controls. The total curvature enclosed in a path
will now depend smoothly on the path. The temperature
scale is determined by T, = h?>/4mkzAp{ where kg is
Boltzmann constant and m the mass of the scattered par-
ticle. At this temperature the support of f near a vortex
becomes comparable with the distance between vortices.
From the definition of 7|, it follows that the larger the
swimmer (the larger €) the more sensitive it is to
temperature.

Pushmepullyou and the three linked spheres have an
essentially different behavior at high temperatures. Since
the neighboring vortexes of three linked spheres (at 7 = 0)
are of opposite sign, the smearing at high temperatures
leads to vanishing curvature at high temperatures (see

FIG. 3 (color online).
spheres, shown in a 3D plot as a function of control parameters
at low temperature, T = T,/4 (left) and high temperature,
T = 4T, (right). The height of the peaks in the figure on the
left is about a million times the height of the peaks on the right.
The distance covered in one stroke is the total curvature enclosed
by the stroke.

The curvature for the three linked
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FIG. 4 (color online). The curvature at finite temperatures for
Pushmepullyou, shown in a 3D plot as a function of control pa-
rameters for low temperatures (left) and high tempera-
tures (right). In contrasts with the three linked spheres, Pushme-
pullyou has finite curvature also at high temperatures.

Fig. 3). Thus the three linked spheres do not swim ef-
fectively at high temperatures. On the other hand, the
smearing of the vortices of Pushmepullyou (at 7 = 0)
does not lead to mutual cancellation (see Fig. 4). That
means Pushmepullyou can swim effectively also at high
temperatures.

In the course of its motion a swimmer will, in general,
transfer energy to the medium and dissipate energy. As we
shall now show, in the adiabatic limit swimming without
dissipation is possible in one-dimensional Fermi gas at
zero temperature.

We define the dissipation, D, as the leading order (in the
adiabaticity parameter) of difference between the outgoing
and incoming energy current. From [14]:

D =iTrE ($$*) = 0. (11)
4
One of the consequences of this relation is that a non-
dissipating swimmer is indistinguishable from a static
scatterer (since S = 0). Clearly, there is no dissipation in
the former, and there should therefore be no dissipation in
the latter.
To see why it is possible to swim without dissipation,
write Eq. (11), (in the two channel case), in the form:

. h . .
D= 2—[(& — 2kpX)*cos?6 + 6% + 32]. (12)
T

The first term vanishes by Eq. (10). Thus if § = y =0
there is no dissipation. We call a swimming without dis-
sipation ‘“‘superswimming.” Note that the ambient me-
dium, an ideal gas, has no gap in the spectrum and so,
unlike a superfluid, does not offer protection from dissipa-
tion [for friction effects in superfluids, see, e.g., [18]].
Indeed, energy would be required to drag the swimmer
through the medium. It is only by choosing a swimming
stroke carefully that the superswimmer avoids dissipating
energy.

A superswimmer needs a larger space of controls to
ensure that § = ¥ = 0. (For instance, to make a super-
swimmer out of Pushmepullyou one needs to control also

the overall phase e’” of the two individual scatterers.)
Superswimmers are, in general, not transparent and one
still needs to invest power to drag them. Only when the
superswimmer swims on its own, there is no transfer of
energy to the ambient medium.

We note that no dissipation, § = 0, implies Eq. (10) and
hence implies quantization.
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