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Observations of Density Fluctuations in an Elongated Bose Gas:
Ideal Gas and Quasicondensate Regimes

J. Esteve,1,2 J.-B. Trebbia,1 T. Schumm,1 A. Aspect,1 C. I. Westbrook,1 and I. Bouchoule1

1Laboratoire Charles Fabry, CNRS et Université Paris Sud 11, 91403 Orsay Cedex, France
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We report in situ measurements of density fluctuations in a quasi-one-dimensional 87Rb Bose gas at
thermal equilibrium in an elongated harmonic trap. We observe an excess of fluctuations compared to the
shot-noise level expected for uncorrelated atoms. At low atomic density, the measured excess is in good
agreement with the expected ‘‘bunching’’ for an ideal Bose gas. At high density, the measured fluctuations
are strongly reduced compared to the ideal gas case. We attribute this reduction to repulsive interatomic
interactions. The data are compared with a calculation for an interacting Bose gas in the quasicondensate
regime.
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FIG. 1. Schematic of the experimental setup. Left: drawing of
the wires constituting the atom chip. We keep I1 � I2 � 3 A and
adjust I1 � I2 between 0.3 and 1 A to vary the confinement along
z. The uniform field B0 is approximately 40 G, we also add a
small field (&1 G) along z. Right: optical imaging system. We
image the cloud and its reflection on the atom chip onto a CCD
camera. In the radial direction, the unresolved cloud images
cover approximately five pixels whose size in the object plane is
� � 6 �m.
In a classical gas, the mean square fluctuation of the
number of particles within a small volume is equal to the
number of particles (we shall call this fluctuation ‘‘shot
noise’’). On the other hand, because of quantum effects, the
fluctuations in a noncondensed Bose gas are larger than the
shot-noise contribution [1]. For photons, the well-known
Hanbury Brown–Twiss or ‘‘photon bunching’’ effect is an
illustration of this phenomenon [2]. Analogous studies
have been undertaken to measure correlations between
bosonic atoms released from a trap after a time of flight
[3–6]. However, bunching in the density distribution of
trapped cold atoms at thermal equilibrium has not been yet
directly observed.

Density fluctuations of a cold atomic sample can be
measured by absorption imaging as proposed in [7,8] and
recently shown in [5,9]. When using this method, one
necessarily integrates the density distribution over one
direction, and this integration can mask the bunching effect
whose correlation length is of the order of the de Broglie
wavelength. A one-dimensional (1D) gas, i.e., a gas in an
anisotropic confining potential with a temperature lower
than or of order of the zero point energy in two directions,
allows one to avoid this integration, and is thus a very
favorable experimental geometry.

Additionally, atoms in 1D do not Bose condense [10].
One can therefore achieve a high degree of quantum de-
generacy without condensation, which enhances the
bunching effect for an ideal gas. When one considers the
effect of interactions between atoms, two additional re-
gimes can appear: the Tonks-Girardeau regime and the
quasicondensate regime [11]. Starting from an ideal gas,
as one increases density at fixed temperature T, the 1D
interacting Bose gas passes smoothly to the quasiconden-
sate regime. The linear density scale for this crossover is
given by nT � �m�kBT�2=@2g�1=3, where g is the effective
1D coupling constant and m the atomic mass [12,13].
Density fluctuations are suppressed by a factor �n=nT�3=2

compared to the ideal gas [see Eq. (4) below], although
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phase fluctuations remain [14–18]. We emphasize that this
crossover occurs in the dense, weakly interacting limit
which is the opposite of the Tonks-Girardeau regime.

To measure the density fluctuations of a trapped Bose
gas as a function of its density, we acquire a large number
of images of different trapped samples under identical
conditions. We have access to both the ideal Bose gas
limit, in which we observe the expected excess fluctuations
compared to shot noise, as well as the quasicondensate
regime in which repulsive interactions suppress the density
fluctuations.

Our measurements are conducted in a highly anisotropic
magnetic trap created by an atom chip. We use three
current carrying wires forming an H pattern [19] and an
external uniform magnetic field to magnetically trap the
87Rb atoms in the jF � 2; mF � 2i state (see Fig. 1).
Adjusting the currents in the wires and the external mag-
netic field, we can tune the longitudinal frequency between
7 and 20 Hz while keeping the transverse frequency
!?=�2�� at a value close to 2.85 kHz. Using evaporative
cooling, we obtain a cold sample at thermal equilibrium in
the trap. Temperatures as low as 1:4@!?=kB are accessible
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with an atom number of 5� 103. The atomic cloud has a
typical length of 100 �m along the z axis and a transverse
radius of 300 nm.

As shown in Fig. 1, in situ absorption images are taken
using a probe beam perpendicular to the z axis and reflect-
ing on the chip surface at 45	. The light, resonant with the
closed transition jF � 2i ! jF0 � 3i of the D2 line is
switched on for 150 �s with an intensity of one tenth of
the saturation intensity. Two images are recorded with a
CCD camera whose pixel size ��� in the object plane is
6:0� 6:0 �m2. The first image is taken while the trapping
field is still on. The second image is used for normalization
and is taken in the absence of atoms 200 ms later. During
the first image, the cloud expands radially to about 5 �m
because of the heating due to photon scattering by the
atoms. The size of the cloud’s image is even larger due
to resolution of the optical system (about 10 �m) and
because the cloud and its image in the mirror at the atom
chip surface are not resolved. Five pixels along the trans-
verse direction x are needed to include 95% of the signal.

We denote by Nph
i �x; z� the number of photons detected

in the pixel at position �x; z� for the image i (i � 1; 2). We
need to convert this measurement into an atom number
N�z� detected between z and z��. Normally, one simply
computes an absorption per pixel ln�Nph

2 =N
ph
1 � and sums

over x:

N�z� �
X
x

ln�Nph
2 �x; z�=N

ph
1 �x; z���

2=�e; (1)

where �e is the absorption cross section of a single atom.
When the sample is optically thick and the atomic density
varies on a scale smaller than the optical resolution or the
pixel size, Eq. (1) does not hold since the logarithm cannot
be linearized. In that case, Eq. (1) underestimates the atom
number and the error increases with optical thickness.
Furthermore, in our geometry, optical rays cross the atomic
cloud twice since the cloud image and its reflection in the
atom chip surface are not resolved.

We partially correct for these effects by using in Eq. (1)
an effective cross section �e determined as follows. We
compare the measured atom number using the in situ pro-
cedure described above with the measured atom number
after allowing the cloud to expand and to leave the vicinity
of the chip surface. In this case, Eq. (1) is valid and the
atomic cross section �0 � 3�2=�2�� well known. We
then obtain for the effective cross section �e � 0:8�0.
Although this effective cross section depends on the atomic
density, we have checked that for the total atom number
between 2� 103 and 9� 103 the measured value varies by
only 10%. Taking into account the uncertainty on the value
of �0, we estimate the total error on the measured atom
number N�z� to be less than 20%.

To measure the variance of the atom number in a pixel,
we acquire a large number of images (typically 300) taken
in the same experimental conditions. To remove technical
noise from our measurement, the following procedure is
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used to extract the variance. For each image, we form the
quantity �N�z�2 � �N�z� � �N�z��2, where the mean value
�N�z� is normalized to contain the same total atom number

as the current image. We thus correct for shot to shot total
atom number fluctuations. The average is performed only
over p � 21 images which bracket the current image so
that long term drifts of the experiment do not contribute to
the variance. We have checked that the results are inde-
pendent of p, varying p between 5 and 21 [20]. A large
contribution to �N�z�2, irrelevant to our study, is the pho-
ton shot noise of the absorption measurement. To pre-
cisely correct for this noise, we subtract the quantityP
x�1=N

ph
1 �x; z� � 1=Nph

2 �x; z����
2�e�2 from �N�z�2 for

each image. We typically detect 104 photons per pixel
corresponding to a contribution to �N2 of about 50. To
convert the camera signal into a detected photon number,
we use a gain for each pixel that we determine by measur-
ing the photon shot noise of images without atoms as
explained in [21]. The corrected �N�z�2 obtained for all
images are then binned according to the value of �N�z�,
rather than of z itself. This gives the variance of the atom
number h�N�z�2i as a function of the mean atom number
per pixel. Since more pixels have a small atom number, the
statistical uncertainty on the estimate of the variance de-
creases with the average atom number (see Figs. 2 and 3).

Data shown in Fig. 2 correspond to atom clouds of
sufficiently low density so that effect of interatomic inter-
actions is expected to be small. The three data sets corre-
spond to three different temperatures, the trapping
frequencies are 2.85 kHz and 7.5 Hz. We deduce the
temperature and the chemical potential of the sample by
fitting the mean longitudinal profile �N�z� of the cloud to the
profile of an ideal Bose gas (see inset of Fig. 2). For the
‘‘hot’’ sample where bunching gives negligible contribu-
tion to �N2 [see Eq. (3)], we observe atomic shot-noise
fluctuations; i.e., the atom number variance increases lin-
early with the mean atom number. The fact that we recover
the linear behavior expected for shot noise increases our
confidence in the procedure described in the previous two
paragraphs. The slope � is only 0.17 and differs from the
expected value of 1. We attribute this reduction to the fact
that our pixel size is not much bigger than the resolution of
our optical imaging system, thus one atom is spread out on
more than one pixel. When the pixel size is small enough
compared to the optical resolution and in the case of weak
optical thickness, the expected slope is simply approxi-
mated by � ’ �=�2

����
�
p

��, where � is the rms width of the
optical response which we suppose Gaussian. From the
measured slope, we deduce � � 10 �m in good agreement
with the smallest cloud image we have observed (8 �m).

For ‘‘cold’’ samples, we see an excess in the atom
number variance compared to shot noise. We attribute
this excess to bunching due to the bosonic nature of the
atoms. In a local density approximation, the fluctuations of
a radially trapped Bose gas with longitudinal density n�z�
are [22]
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hn�z�n�z0�i � hn�z�i2 � hn�z�i��z� z0� �
1
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FIG. 2. Atom number variance as a function of the mean atom
number per pixel. Open circles correspond to a hot cloud (kBT ’
10@!?, !? � 2�� 2:85 kHz) for which fluctuations are given
by the shot noise (black line). The solid circles correspond to
cold clouds. Error bars show the standard deviation of the mean
of h�N2i. The fluctuations in excess of shot noise are due to
bosonic bunching. The dot-dashed line is the prediction for an
ideal Bose gas while the dotted line uses the Maxwell-
Boltzmann approximation [see Eq. (3)]. The insets show the
longitudinal profile of the two cold clouds from which we
deduce the temperature and the chemical potential used for the
calculations.
where � is the local chemical potential, � � 1=�kBT�,
�dB �

�����������������������������
2�@2=�mkBT�

p
is the de Broglie thermal wave-

length, and h
i denotes an ensemble average. The first
term on the right-hand side corresponds to shot noise,
and the second term to bunching. For a nondegenerate
gas �n�dB � 1�, one can keep only the term i � j � 1.
The bunching term reduces to hn�z�i2 exp��2��z�
z0�2=�2

dB�tanh2��@!?=2� and one recovers the well-known
Gaussian decay of the correlations. The reduction factor
tanh2��@!?=2� is due to the integration over the trans-
verse states. In our experiment, the pixel size is always
much bigger than the correlation length. In which case,
integrating over the pixel size �, we have

hN2i � hNi2 � hNi � hNi2
�dB���
2
p

�
tanh2��@!?=2�: (3)

The coefficient of hNi2 is the inverse of the number of
elementary phase space cells occupied by the N atoms.

To compare Eq. (3) to our data we must correct for the
optical resolution as was done for the shot noise.
Furthermore, atoms diffuse about 5 �m during the imag-
ing pulse because of photon scattering. This diffusion
modifies the correlation function, but since the diffusion
distance is smaller than the resolution, 10 �m, and since
its effect is averaged over the duration of the pulse, its
contribution is negligible. We thus simply multiply the
computed atom number variance by the factor �.

Figure 2 shows that the value calculated from Eq. (3)
(dotted line) underestimates the observed atom number
variance. In fact, for the coldest sample, we estimate
n�0��dB ’ 10, and thus the gas is highly degenerate. In
this situation replacing the Bose-Einstein occupation num-
bers by their Maxwell-Boltzmann approximations is not
valid, meaning that many terms of the sum in Eq. (2) have
to be taken into account. The prediction from the entire
sum is shown as a dot-dashed line and is in better agree-
ment with the data.

In the experiment we are also able to access the quasi-
condensate regime in which interparticle interactions are
not negligible, and the ideal gas theory discussed above
fails. Figure 3 shows the results of two experimental runs
using denser clouds. For these data, the trapping frequen-
cies are 2.85 kHz and 10.5 Hz. The insets show the mean
longitudinal cloud profiles and a fit to the wings of the
profiles to an ideal Bose gas profile. One can see from these
insets that, unlike the conditions of Fig. 2, an ideal gas
model does not describe the density profile in the center.
We employ the same procedure to determine the variance
versus the mean atom number. As in Fig. 2 we plot our
experimental results along with the ideal Bose gas predic-
tion based on the temperature determined from the fit to the
wings in the insets. For small mean value �N�z�, the mea-
sured fluctuations follow the ideal gas curve (dot-dashed
13040
line) but they are dramatically reduced when the atom
number is large.

The theory for a weakly interacting uniform 1D Bose
gas permits an analytical prediction for the density fluctu-
ations in the limit n� nT . In this limit, the gas enters the
Gross-Pitaevskii regime and density fluctuations are given
in the Bogoliubov approximation by [12,13]

h�n�z��n�z0�i�
hni
2�

Z 1
�1
dkeik�z�z

0�

�
k2

k2�4��2

�
1=2
�1�2nk�;

(4)

where nk is the Bose thermal occupation factor of the mode

k with energy 	k �
������������������������������
k2�k2 � 4��2�

p
� @

2=�2m� and � �
@=

����������
mng
p

is the healing length. For 200 atoms per pixel, the
healing length is about 0:3 �m in our experiment [23]. The
term proportional to nk describes the contribution of ther-
mal fluctuations while the other is due to vacuum fluctua-
tions. Since the pixel size is much bigger than the healing
length, we probe only long wavelength fluctuations for
which thermal fluctuations dominate at the temperatures
we consider. Using k� 1=� and nk ’ kBT=	k, we obtain
for the atom number variance in a pixel
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FIG. 3. We plot the same quantities as in Fig. 2. Dot-dashed
lines are the predictions for an ideal Bose gas [deduced from
Eq. (2)], whereas the dashed lines show the results of Eq. (6).
The temperature of the sample is deduced by fitting the wings of
the longitudinal profile to an ideal Bose gas profile as shown in
the insets. The solid lines gives the atomic shot-noise level.
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hN2i � hNi2 � �
kBT
g
: (5)

This formula can also be deduced from thermodynamic
considerations: for a gas at thermal equilibrium, the atom
number variance in a given volume is given by

hN2i � hNi2 � kBT�@N=@��T: (6)

For a quasicondensate with chemical potential gn, Eqs. (5)
and (6) coincide.

The calculation leading to Eq. (5) holds in a true 1D
situation in which case the effective coupling constant is
g � 2@!?a, where a is the scattering length of the atomic
interaction. The validity condition for the 1D calculation is
n� 1=a (equivalently �� @!?). In our experiment
however, the value of na is as high as 0.7 and thus one
cannot neglect dependence of the transverse profile on the
local density. On the other hand, the thermodynamic ap-
proach is valid and, supposing ��N� is known, Eq. (6)
permits a very simple calculation. We use the approximate
formula ��N� � @!?

�������������������������
1� 4Na=�

p
valid in the quasicon-

densate regime [24]. This formula connects the purely 1D
regime with that in which the transverse profile is Thomas-
Fermi. The results of this analysis, confirmed by a full 3D
Bogoliubov calculation, are plotted in Fig. 3 (dashed line).
Equation (5) predicts a constant value for the atom number
variance and underestimate it by 50% for the maximal
density reached in our experiment ( �N � 400).

We compare this calculation in the quasicondensate re-
gime with our data. From Fig. 3 we see that the calculation
agrees well with the measurements for kBT � 1:4@!? but
less so for kBT � 2:4@!?. The one-dimensional theory
predicts that the quasicondensate approximation is valid in
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the limit n� nT , which corresponds to hNi � 100�140�
for kBT � 1:4@!? (kBT � 2:4@!?). The disagreement
between the calculation and our data for kBT � 2:4@!?
suggests that perhaps we did not achieve a high enough
density to be fully in the quasicondensate approximation.
In addition the one-dimensional calculation of nT is unre-
liable for such high ratio kBT=@!? and underestimates the
value at which the cross over appears. This is also the case
for the data of Fig. 2 where the naive estimate of nT
corresponds to hNi � 160 for kBT � 2:9@!? and hNi �
130 for kBT � 2:1@!?.

Exploitation of the 1D geometry to avoid averaging the
fluctuations in the imaging direction can be applied to
other situations. A Bose gas in the strong coupling regime,
or an elongated Fermi gas should show sub-shot-noise
fluctuations due to antibunching.
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