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Density Profile of a Trapped Strongly Interacting Fermi Gas with Unbalanced Spin Populations
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We present a theoretical study of the density profile of a trapped strongly interacting Fermi gas with
unbalanced spin populations. Making the assumption of the existence of a first order phase transition
between an unpolarized superfluid phase and a fully polarized normal phase, we show good agreement
with a recent experiment presented by Partridge et al.
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FIG. 1 (color online). Comparison between experimental data
of Ref. [23] and the model presented here. P � �N1 �
N2�=�N1 � N2� is the imbalance between the two spin popula-
tions. The radius R of each component is normalized to the
radius RTF of the ideal Fermi gas containing the same atom
number. Squares and diamonds correspond to experimental
measurements of the radii of the minority and majority compo-
nents, respectively. The full lines are the predictions of the first
order transition model.
In the Bardeen-Cooper-Schrieffer (BCS) mechanism,
the onset of superfluidity is associated with pairing be-
tween two fermionic species with matched Fermi levels.
This scheme is relevant to systems like metal supercon-
ductors, superfluid 3He, or ultracold gases, as observed in
recent ground breaking experiments [1–6]. However, other
physical systems, like magnetized superconductors or neu-
tron stars, require the understanding of fermionic super-
fluidity in the presence of mismatched chemical potentials.
The nature of superfluidity in these systems has been the
subject of long-standing debate [7–9], which has been
renewed by the opportunity to address this topic experi-
mentally using gaseous samples. Various mechanisms
were proposed to describe the ground state of an ensemble
of fermions with mismatched Fermi levels: deformed
Fermi surface [10], Fulde-Ferrell-Larkin-Ovshinnikov
(FFLO) states, where Cooper pairs acquire finite momen-
tum, and their generalization to trapped systems [11–13],
interior gap superfluidity [14], or phase separation between
a normal and a superfluid state through a first order phase
transition [15–18]. When the strength of the interactions is
varied, a complicated phase diagram mixing several of
these scenarios is expected [19–21].

Extending the seminal observation of fermionic super-
fluidity in ultracold atom systems, two recent experiments
[22,23] have started probing the regime of mismatched
Fermi levels by cooling samples containing different
atom numbers in each spin state. In this Letter we focus
on the results presented in Ref. [23] where the authors
studied the density profile of a gas of fermionic lithium
when varying, in the regime of strong interactions, the
population imbalance between the two trapped spin states.
One of the most striking results is displayed in Fig. 1. It
shows that the radius of the minority component is strongly
reduced with respect to that of noninteracting gas with the
same atom number. In this Letter, we propose an interpre-
tation of this result on the basis of the existence of first
order phase separation between the normal and superfluid
components and the use of universality in the strong inter-
action regime. We show that these two ingredients are
sufficient to provide a good quantitative agreement with
experimental data. It is therefore complementary to recent
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studies of Refs. [24–27], who address the same topics
using a more complicated formalism.

Our analysis is based on the assumption of the existence
of a zero temperature first order phase transition between a
fully polarized normal phase containing a single spin spe-
cies and an ‘‘unpolarized’’ superfluid state composed of a
balanced mixture of the two species. The existence of this
phase transition was suggested by previous theoretical
studies [15–17] and is based on the following qualitative
argument: In the grand canonical ensemble, the chemical
potentials �i of the two species are fixed. In the ground
state, the system minimizes the grand-potential � � H �P
i�iNi, where H is the Hamiltonian of the system and Ni

is the population of species i. Let us now consider a
situation where the chemical potentials are mismatched,
with �� � �1 ��2 > 0. Promoting a particle from state 2
to state 1 decreases the grand potential by �� but implies
the breaking of a pair, hence increases the energy by the
1-1 © 2006 The American Physical Society
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superfluid gap �. When �� & � we therefore expect the
system to be unpolarized, while above this threshold a fully
polarized system is obtained.

At zero temperature, the actual position of the phase
transition can be found analytically in the case of a homo-
geneous unitary gas by matching chemical potentials and
pressures in the two phases [17]. Indeed, we can write in
the unpolarized phase n1 � n2 � f��1; �2�. Using the
thermodynamical identity @�1

n2 � @�2
n1, we deduce

that f can actually be expressed as a function of � �
��1 ��2�=2 only. To obtain the exact expression for f,
we then consider the case of matched Fermi surfaces,
�1 � �2 � �. In this latter case, universality at the uni-
tary limit allows one to write � � �EF, where EF �
@

2�6�2n�2=3=2m is the Fermi energy of a noninteracting
gas of density n � n1;2 and � is a universal parameter
whose determination has attracted a lot of attention from
both theoretical [17,28–30] and experimental groups
[4,23,31–33] and is now thought to be �� 0:45. Using
this expression for the chemical potential, we then deduce
that

n1 � n2 �
1

6�2

�
m

�@2 ��1 ��2�

�
3=2
: (1)

The Gibbs-Duhem identity dPS � n1d�1 � n2d�2 fi-
nally yields for the pressure in the superfluid phase

PS �
1

15�2

�
m

�@2

�
3=2
��1 ��2�

5=2: (2)

In the normal phase, we assume only the majority com-
ponent is present. We have then an ideal gas constituted of
particles of type 1 with chemical potential �1, thus giving

PN �
1

15�2

�
2m

@
2

�
3=2
�5=2

1 : (3)

Equating PN and PS [34], we see that the two phases
coexist only if �1 and �2 satisfy the condition �2=�1 �
�c with

�c � �2��
3=5 � 1��0:061; (4)

a relation already found in Refs. [17,18]. In a trap, the
chemical potential depends on position.

To compare with experiments, we now consider the case
of a cloud of atoms trapped in a harmonic potential V�r� �
m
P
i!

2
i x

2
i =2. Without loss of generality, we will restrict our

analysis to the case of a isotropic trap with frequency �! �
�!x!y!z�

1=3. We can indeed always recover the more
general anisotropic case by making the scaling transform
xi ! !ixi= �!.

To calculate the density profile of the cloud, we make
use of the local density approximation, where we assume
that the chemical potential of species i depends on position
as �i�r� � �0

i � V�r�.
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If we assume component 1 is the most populated, the
inner superfluid region is defined by the condition
�2�r�=�1�r�<�c and is bounded by the radius R2 defined
by

R2
2 �

2

m �!2

�
�0

2 � �c�
0
1

1� �c

�
: (5)

Atoms of the minority species are located in the paired
superfluid phase only. We thus have

N2 �
Z
r<R2

n2�r�d
3r �

2

3��3=2

�
�0

1 ��
0
2

@ �!

�
3
g�R2= �R�;

(6)

where �R2 � ��0
1 ��

0
2�=m �!2 and

g�x� �
x
��������������
1� x2
p

��3� 14x2 � 8x4� � 3 arcsin�x�
48

: (7)

Excess atoms of the majority species are located be-
tween r � R2 and r � R1 such that m �!2R2

1=2 � �0
1.

The number of excess atoms is therefore N1 � N2 �RR1
R2
n1�r�d3r, hence

N1 � N2 �
2

3�

�
2�0

1

@ �!

�
3
�g�1� � g�R2=R1��: (8)

Dividing (8) by (6) yields the implicit equation for �0 �
�0

2=�
0
1 as a function of N1=N2

N1

N2
� 1� �3=2 8

�1� �0�
3

g�1� � g�R2=R1�

g�R2= �R�
: (9)

Equation (9) is solved numerically and the value ob-
tained for �0 is then used to calculate the radii R1 and R2.
The predicted evolution of the Ri versus the population
imbalance P � �N1 � N2�=�N1 � N2� is shown in Fig. 1.
To follow Ref. [23], we have normalized each Ri to the
Thomas-Fermi radius RTF associated with an ideal gas
containing Ni atoms. The agreement with the experimental
data is quite good as soon as P * 0:1, a remarkable result,
since the model presented here contains no adjustable
parameter, as soon as the value of � is known.

For weak population unbalance, experimental variations
of the radii are flatter than predicted by the first order
transition model. As proposed in Ref. [23], this suggests
that the phase separation does not happen exactly at P � 0,
but above some threshold Pc � 0:1. This point is strength-
ened when one compares the theoretical and experimental
density profiles. As in Ref. [23], we have represented in
Fig. 2 the integrated column density ~ni�x� �

R
dyni�x; y; 0�

for P � 0:57 (as in Fig. 2.D of Ref. [23]). We immediately
see in this figure that the transition between the two phases
is very sharp, by contrast to what is observed experimen-
tally. Finite temperature might explain this discrepancy.
Indeed, for low population imbalance, the superfluid phase
extends nearly throughout all the cloud, and, in particular,
in regions where the density, hence the Fermi energy, is
1-2
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FIG. 3. Critical population imbalance under which finite tem-
perature effects overrule demixing. The observed experimental
threshold P� 0:1 corresponds to a temperature T=TF & 0:1.
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FIG. 2 (color online). Integrated column density of the
majority (full line) and minority components (dashed line) for
a population imbalance P � 0:57. Inset: excess column density
~n1 � ~n2. By contrast with the experimental results, the boundary
between the two phases is here very sharp.
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very low. In the unitary regime, the critical temperature for
the superfluid-normal transition is given by the scaling
kBTc � �EF, with �� 0:2 [35]. It may then happen that
near the cloud edge, the temperature T of the sample
becomes locally larger than Tc. If this condition is satisfied
at a radius Rc smaller than the demixing radius R2, then the
first order transition to the fully unpaired state will not
happen. If we introduce the Fermi temperature TF �
@ �!�6N1�

1=6=kB associated with a number of atoms N1,
the superfluid-normal and paired-unpaired transitions will
happen at the same position if T=TF satisfies the condition

T
TF
�
�
2�

�
R1

RTF

�
2
�

1� �0 � 2
�
R2

R1

�
2
�
: (10)

In Fig. 3, we have plotted as a function of temperature
the evolution of the critical imbalance under which no
demixing is expected. Experimentally, demixing only hap-
pens in the conditions of Ref. [23] for P * 0:1, which,
according to Eq. (10), corresponds to T=TF & 0:1, a value
compatible with experimental data. Despite a semiqualita-
tive agreement, this finite temperature argument needs to
be clarified by a more careful analysis, following, for
instance, the work presented in Ref. [25]. Other scenarios
can also be envisioned to explain the smooth crossover
between the two phases, such as the existence of an inter-
mediate phase—e.g., a gapless or FFLO phase as proposed
in Ref. [20]—or a breakdown of the local density approxi-
mation due to the fast variation of the density profile.
Nevertheless, the good agreement between theory and
experiment for the data presented in Fig. 1 suggests that
the crossover region between paired and unpaired phases
should remain relatively narrow.
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From the analysis presented here, it appears that the
observations of Ref. [23] are consistent with a scenario
of a transition between a fully paired and a fully polarized
phase separated by a narrow crossover region probably
related to finite temperature effects breaking the superfluid
phase before demixing may occur. Interestingly, if this
thermal scenario were confirmed the measurement of the
critical population unbalance under which no phase sepa-
ration happens could provide a useful tool for fermion
thermometry. Another issue not addressed here is related
to the superfluid character of the system when the popula-
tion imbalanced is varied. This is especially important if
one wishes to understand the results presented in Ref. [22]
where it is shown that a mismatch of the Fermi surfaces by
about 50% leads to a breakdown of superfluidity.

The author wishes to thank C. Mora and C. Salomon as
well as the cold atom group for helpful discussions. This
work is partially supported by CNRS, Collège de France,
ACI nanoscience, and Région Ile de France (IFRAF).
Laboratoire Kastler Brossel is Unité de recherche de
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