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We investigate the accuracy of trial wave functions for quantum Monte Carlo based on Pfaffian
functional form with singlet and triplet pairing. Using a set of first row atoms and molecules we find that
these wave functions provide very consistent and systematic behavior in recovering the correlation
energies on the level of 95%. In order to get beyond this limit we explore the possibilities of multi-Pfaffian
pairing wave functions. We show that a small number of Pfaffians recovers another large fraction of the
missing correlation energy comparable to the larger-scale configuration interaction wave functions. We
also find that Pfaffians lead to substantial improvements in fermion nodes when compared to Hartree-Fock

wave functions.
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Wave functions of interacting quantum systems such as
electrons in matter are notoriously difficult to calculate
despite decades of effort. One of the most productive
many-body methods for electronic-structure problems is
the quantum Monte Carlo (QMC) procedure, which em-
ploys stochastic approaches both for solving the stationary
Schrodinger equation and for evaluation of expectation
values [1-3]. The key advantage of QMC is its capability
to use explicitly correlated wave functions which allow the
study of many-body effects beyond the reach of mean-field
approaches. The most important limit on QMC accuracy is
the fixed-node approximation which is used to circumvent
the fermion sign problem [4,5]. Even with this approxima-
tion, the fixed-node QMC has been very successful for a
host of real systems such as molecules, clusters, and solids
with up to hundreds of valence electrons and has provided
an agreement with experiments (1% —3%) for cohesive
energies, band gaps, and other energy differences [3].
However, reaching beyond the fixed-node limit has proven
to be challenging since fermion nodes (subset of position
space where the wave function vanishes) are complicated
high-dimensional manifolds which are affected by corre-
lation as well. Accuracy of QMC trial wave functions is
therefore crucial for both fundamental and also computa-
tional reasons.

The state-of-the-art QMC calculations employ accurate
Slater-Jastrow wave functions that can be written as ¥ =
W, exp[Ueo] Where W, is the antisymmetric part while
U, describes the electron-electron and higher-order cor-
relations. The antisymmetric part is either a single Hartree-
Fock (HF) determinant of one-particle orbitals or a multi-
reference sum of excited determinants such as a limited
configuration interaction (CI) expansion [6]. A natural gen-
eralization of a one-particle orbital is a two-particle or pair
orbital, sometimes called a geminal. In particular, the
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Bardeen-Cooper-Schrieffer (BCS) wave function, which
is an antisymmetrized product of singlet pairs, has been
recently used to calculate several atoms and molecules as
well as superfluid Fermi gases [7-9]. The results show
significant improvements over the single-determinant HF
wave functions. Nevertheless, for partially spin-polarized
systems the energy gains are less pronounced due to the
lack of pairing correlations in the spin-polarized subspace
[8]. The spin-polarized triplet pairing wave functions based
on Pfaffians have been tried a few times on model systems
[10,11].

In this Letter, we propose to describe systems of elec-
trons by Pfaffian wave functions with variational freedom
beyond HF and also BCS wave functions. The Pfaffian al-
lows us to incorporate pair orbitals for both singlet and trip-
let pairing channels together with unpaired one-particle or-
bitals into a single, compact wave function. These Pfaffian
wave functions are tested on atomic and molecular sys-
tems in variational and fixed-node diffusion Monte Carlo
methods. The results show significant gains in correlation
energy both for spin-polarized and unpolarized cases.
Furthermore, we explore the multi-Pfaffian wave functions
and we find that they recover a large fraction of the missing
correlation energy while being much more compact than
expansions in determinants.

Let us consider 1,2,..., N spin-up and N + 1,...,2N
spin-down electrons in a singlet state with electron spatial
coordinates denoted simply as R = (1, 2, ..., 2N). An anti-
symmetrized product of singlet pair orbitals (i, j) =
@(j, i) is the BCS wave function

Wpes = Al )] = det[ (i, j)] = det[@], (1)

which is simply a determinant of N X N matrix. The BCS
wave function is efficient for describing systems with
single-band correlations such as Cooper pairs in conven-
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tional BCS superconductors where pairs form from one-
particle states close to the Fermi level. For partially spin-
polarized states one can augment the matrix by columns/
rows of one-particle orbitals. However, the spin-polarized
subspace is then uncorrelated and for a fully spin-polarized
system one ends up with the usual Hartree-Fock wave
function. In order to correlate spin-polarized electrons it
is necessary to generalize the wave function form and
introduce effects of triplet pairing.

For a system of 2N fully spin-polarized electrons the
pairing wave function is formed as an antisymmetrized
product of triplet pair orbitals x(i, j) = —x(j, i) and is
given by [10,11]

Alx(1,2)xG3,4)...1=Pilx( )] =Pilgl, (2
which defines a Pfaffian of degree 2N, e.g., for N = 2

PE[x(i, )] = x(1,2)x(3,4) — x(1,3)x(2,4)
+ x(1, 4)x(2, 3). 3)

Any Pfaffian of an odd degree vanishes, however, the
Pfaffian wave function can be easily generalized to an
odd number of electrons by extending the Pfaffian by a
row/column of one-particle (unpaired) orbital. For ex-
ample, for three spin-up electrons, replace the last row/
column in the equations above as x(i,4) — ¢(i) and
x4, i) — —¢@(i). We note that the Hartree-Fock wave
function is a special case of both BCS singlet and
Pfaffian triplet pairing wave functions as discussed [12].

The square of the Pfaffian is related to the determinant of
a skew-symmetric matrix as

{PfLx(i, HI* = detlx (i, )] “)

However, the QMC applications require also the knowl-
edge of the wave function sign, e.g., for enforcing the
fixed-node restriction. Therefore, we have implemented a
direct evaluation of Pfaffian based on an O(N?) algorithm
which is analogous to Gauss elimination for determinants.
Note that Pfaffians can be expanded in Pfaffian minors and
by exploring Cayley’s results [13] one can calculate the
Pfaffian and its updates for electron moves in computer
time similar to the calculation of determinants [12].

Let us now consider a partially spin-polarized system
with unpaired electrons. Remarkably, the Pfaffian form can
accommodate both singlet and triplet pairs as well as one-
particle unpaired orbitals into a single, compact wave
function. The singlet/triplet/unpaired (STU) orbital
Pfaffian wave function is given by

gTT ol ol
—plT gl ol |, 5)
_ ‘PTT _ ‘PlT 0

Wy = Pf

where the bold symbols are block matrices/vectors of
corresponding orbitals and 7 denotes transposition. For a
spin-restricted STU wave function the pair and one-

particle orbitals of spin-up and spin-down channels would
be identical.

The Pfaffian wave functions were used in QMC calcu-
lations by variational and fixed-node diffusion
Monte Carlo (VMC and DMC) methods [2,3]. The VMC
trial/variational wave function is a product of an antisym-
metric part W, times a Jastrow correlation factor

Vymc(R) = W4 (R) exp[Ucor({rifh {rih {riPD)  (6)

where U, depends on electron-electron, electron-ion, and
electron-electron-ion combinations of distances [3,14]
with a maximum of 22 variational parameters. For the
antisymmetric part we have used ¥, = Wy and ¥V, =
Yoy as well as some tests with ¥, = Wpcg to compare
with recent results [8,9]. The pair orbitals were expanded
in products of one-particle orbital basis [8] as

k1

The coefficients are symmetric (c;; = cy) for the singlet
¢(i, j), and antisymmetric (cy; = —cy) for the triplet
x(i, j) functions. The expansions include both occupied
and unoccupied (virtual) one-particle orbitals. The one-
particle atomic and molecular orbitals used in expansions,
which we tested, were either Hartree-Fock orbitals or
natural orbitals [6] from CI correlated calculations.
Typically, we used about 10 virtual orbitals and the natural
orbitals produced better and more systematic results than
the HF ones. The pair orbital expansion coefficients were
then optimized in VMC by minimizations of energy using
recently published methods [14].

We have applied these developments to several first row
atoms and dimers (Fig. 1). Except for the Be atom, we used
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FIG. 1 (color online). Correlation energies obtained by QMC
methods with the different trial wave functions: VMC and fixed-
node DMC with HF nodes and STU Pfaffian nodes (PF). The
lower plot shows the fixed-node DMC correlation energy gains
over HF nodes for BCS and STU Pfaffian wave functions. The
statistical error bars are of the symbol sizes or smaller. Except
for the Be atom all the calculations used the same pseudopoten-
tials [15].
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pseudopotentials to eliminate the atomic cores [15] while
the previous calculations with BCS wave functions were
done with all electrons [8]. Nevertheless, our BCS wave
functions produced percentages of correlation energies
rather close to the ones obtained with all electrons [8].
Perhaps the most striking result is a systematic percentage
of recovered correlation energy (94%—97%) for systems
heavier than Be (see Fig. 1). The triplet contribution for
these single Pfaffian STU wave functions are small, with
the only exception being the nitrogen atom, where we see a
gain of additional 1% in correlation energy (Table I) when
compared to the trial wave function without triplet pairs.
We believe that this is due to the fact that the nitrogen atom
is quartet and therefore has the highest spin polarization
from all studied cases.

Our results show that the single Pfaffian form is capable
of capturing single-band near degeneracies and mixing of
excited states for both spin-polarized and unpolarized sys-
tems. Considering multideterminantal expansions, such as
the CI method, the overall trade-off between accuracy and
computational cost seems to be in favor of more compact
and physically based Pfaffian wave functions. A similar
opinion was also expressed by Sorella and co-workers [8].

In order to test the limits of Pfaffian functional form, we
propose a simple extension: a multiple Pfaffian (MPF)
wave function having a form

Wy = Pflx1, &1, @11 + Pflxa, 0, @2 + -+, (8)

so that in Eq. (6) we have ¥, = Wypr. In actual calcu-
lations we start with all pairing functions such that each
Pfaffian is equal to the HF wave function, Pf[ y;, ¢;, ¢;] =
WyE. The pairing orbitals [see Eq. (7)] are expanded in the
basis of HF or natural occupied orbitals, e.g., for the carbon
atom we have 2s, 2p,, and 2p,. The choice of singlet
& (1,2) = 2s(1)2s(2) = ¢[2s, 25] and triplet y,(1,2) =
2p,(1)2p,(2) — 2p,(1)2p,(2) = x1[2p.. 2p,] pairing or-
bitals then gives Pfx;, ¢1] = Wyr[2s", 2pl, 2pl]. How-
ever, one can construct the equivalent combinations
of pairs as: ¢[2s,2p.], xa2[2s,2p,] and ¢5[2s,2p,],
x3[2s,2p,]. We can therefore include all three Pfaffians

TABLE I. Total energies (a.u.) for N atoms and dimers, with
amounts of correlation energy recovered, in VMC and DMC
methods with wave functions as discussed in the text.

Wave function E o E o
(WF) N [%] N, [%]
HF —9.628915 0 —19.44946 0
VMC/HF —9.7375(1) 83.3(1) —19.7958(5) 80.1(1)
VMC/BCS —9.7427(3) 87.3(2) —19.8179(6) 85.2(1)
VMC/STU —9.7433(1) 87.8(1) —19.821(1) 86.0(2)
DMC/HF —9.7496(2) 92.6(2) —19.8521(3) 93.1(1)
DMC/BCS —9.7536(2) 95.7(2) —19.8605(6) 95.1(1)
DMC/STU —9.7551(2) 96.8(1) —19.8607(4) 95.2(1)
Exact/est. —9.759215 100 —19.88196 100

into our Wypr and further optimize independently all the
pairing functions in VMC on the space of occupied and
virtual orbitals. This construction allows us to incorporate
the excitations which are not present in the single Pfaffian
STU wave function based only on a single ¢ and a single y
pairing function. In the leading order the resulting MPF
wave function then corresponds to the CI wave function
with singles and doubles with the same active orbital space.
The disadvantage of this approach is that we perform the
VMC optimizations of M? pairing coefficients for each
Pfaffian given that M is the total size of our orbital basis.
However, this can be improved by a factor of M if we rotate
the one-particle orbitals to make the pairing functions
diagonal. The total number of Pfaffians in the expansion
is then subject to the required symmetry of state and
desired accuracy. In the most general case it would be
proportional to the number of distinct pairs. For large
systems one can restrict the number of pairs by including
only the ones which have significant contributions, e.g.,
pairs formed from states close to the Fermi level, or con-
sidering pairs only within a given band or a subband.

The results (Table IT) show that our MPF wave functions
are able to recover close to 99% of the correlation energy.
Furthermore, comparison with the CI results shows that it
is possible to obtain similar quality of wave functions with
corresponding improvements of the fermion nodes at much
smaller calculational cost. This is another indication that
the inclusion of singlet and triplet pairing enables us to
treat the correlation in both spin-polarized and spin-
unpolarized channels in a consistent manner.

The quality of fermion nodes is crucial for accurate
energies in the fixed-node DMC. The fermion node mani-
fold is defined by an implicit equation W(R) = 0. For N
electrons the manifold has (3N — 1) dimensions and di-
vides the configuration space into compact nodal cells. The
HF spin-polarized ground states typically show two nodal
cells, while HF unpolarized or partially polarized states
have 2 X 2 = 4 nodal cells since the wave function is a
product of spin-up and spin-down determinants [17-19].
Changes in the HF nodal structures from the inclusion of
correlation were recently investigated by D. Bressanini
et al. [18,19]. Here we observe that the pairing correlations

TABLE II. Percentages of correlation energies recovered for
C, N, and O atoms by VMC and DMC methods with wave
functions as discussed in the text. Corresponding number of
Pfaffians or determinants » for each wave function is also shown.
The estimated exact correlation energies for C, N, and O are
0.1031, 0.1303, and 0.1937 a.u. [16].

WF n C n N n O
VMC(MPF) 3 92.3(1) 5  90.6(1) 11 93.6(2)
VMC(CI) 98 89.74) 85 91.9(2) 136 89.7(4)
DMC(MPF) 3 98.9(2) 5  984(1) 11 97.5(1)
DMC(CI) 98 993(3) 85 989(12) 136 984(Q)
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FIG. 2 (color online). A 3D cut through the fermion node
hypersurface of an oxygen atom obtained by scanning the
wave function with a pair of spin-up and spin-down of electrons,
both sitting at the scanning point. The remaining electrons are
fixed at a given VMC snaphsot position (small green spheres).
The nucleus is depicted in the center of the cube by the black
sphere. The three colors show nodes of: Hartree-Fock (red/dark
gray), STU Pfaffian nodes (orange/medium gray), and the nodes
of the CI wave function (yellow/light gray). The CI node is very
close to the exact one (see text). The HF node clearly divides the
space into four nodal cells while Pfaffian and CI wave functions
partitioning leads to the minimal number of two nodal cells.

have an important effect on the nodal structure as well. A
changes in the nodal manifold topology is illustrated in
Fig. 2 on the example of an oxygen atom. As expected, the
HF nodes show four nodal cells while the Pfaffian “opens’
these artificial compartments and changes the topology to
the minimal number of two nodal cells, similar to the effect
of correlation observed for the Be atom [18]. A comparison
of Pfaffian nodes with very accurate CI nodes shows that
both are qualitatively similar. Further results on the prop-
erties of nodes and their improvement are given elsewhere
[12,20].

In conclusion, we have proposed Pfaffians with singlet
pair, triplet pair, and unpaired orbitals as variationally rich
and compact wave functions which offer significant and
systematic improvements over commonly used Slater
determinant-based wave functions. We have demonstrated
that these Pfaffian pairing wave functions are able to
capture a large fraction of missing correlation energy
with consistent treatment of correlation for both spin-
polarized and unpolarized pairs. We have explored also
multi-Pfaffian wave functions which enable us to obtain
more correlation while keeping the wave functions com-
pact. Our Pfaffian wave function results represent only the
lower bound on the recovered correlation energies since we
were focused on systematic trends using new functional
forms. For example, a simultaneous reoptimization of one-

particle orbitals used in representation of pairs could im-
prove the results further. Finally, the Pfaffian wave func-
tions exhibit qualitative improvements in fermion nodes
and eliminate a significant portion of the Hartree-Fock
node errors.
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