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Clustering of Polarity Reversals of the Geomagnetic Field
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Often in nature the temporal distribution of inhomogeneous stochastic point processes can be modeled
as a realization of renewal Poisson processes with a variable rate. Here we investigate one of the classical
examples, namely, the temporal distribution of polarity reversals of the geomagnetic field. In spite of the
commonly used underlying hypothesis, we show that this process strongly departs from a Poisson
statistics, the origin of this failure stemming from the presence of temporal clustering. We find that a
Lévy statistics is able to reproduce paleomagnetic data, thus suggesting the presence of long-range
correlations in the underlying dynamo process.
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FIG. 1. Upper panel: probability density function P��t� of
persistence times �t (statistical errors are shown as vertical
bars). Lower panel: polarity of the Earth’s magnetic field
(from today). The solid bar is the normal (present) polarity.
We used the CK95 data set.
Local paleomagnetic measurements of the geomagnetic
field [1–3] reveal a sequence of sudden and occasional
global polarity reversals in the last 160� 106 years. The
magnetic dipole typically reverses its direction in a few 103

years, while the time intervals between successive rever-
sals range from 104 up to 107 years [1,3,4]. Even though
polarity reversals can be ascribed to the Earth’s magnetic
dynamo [1,5–7], details of the mechanism remain poorly
understood. The debate on the origin of reversals, the
modeling of the trigger (external or internal to Earth) and
the generation of longer variations in the average reversal
rate is still open (cf., e.g., Refs. [2,8]). A look at the
sequence of reversals, for example, the most used CK95
database [3], reproduced in Fig. 1, shows that polarity
reversals seem to be the result of a nonperiodic chaotic
(or stochastic) process. Actually nonregular reversals can
be observed in the framework of purely deterministic toy
models that mimic the dynamics of the dynamo effect with
only few modes [9–11], in the framework of noise-induced
switchings between two metastable states [12–14] or in
mean-field dynamo with a noise-perturbed � profile [7,15].
In principle, geodynamo is described by 3D global mag-
netohydrodynamics (MHD) that self-consistently solve for
the fluid flow, thermodynamics, and magnetic fields with
all nonlinear feedbacks (for a review see Ref. [5] and ref-
erences therein, and the results of the recent 15.2 TFlops
simulation of geodynamo on the Earth simulator [16]).
Although some numerical codes have simulated short se-
ries of spontaneous reversals, none have been run so far at
high enough resolution to be confident that the critical
dynamics is being captured in the simulation.

In spite of the paucity of data sets, it is commonly
assumed that the phenomenon of reversals stems from
an underlying Poisson process. This conjecture is based on
the fact that the polarity persistence times �t, defined
as the time intervals between two consecutive revers-
als �t � ti�1 � ti, seem to be exponentially distributed
06=96(12)=128501(4)$23.00 12850
[1,13,17,18], namely, P��t� � � exp����t�, where � rep-
resents the rate of occurrence of reversals. Different analy-
ses (cf., e.g., Ref. [19]) state that the frequency distribution
of intervals between Cenozoic geomagnetic reversals ap-
proximate a power law for large �t. Even a rough look at
the probability distribution function (PDF) P��t� (cf.
Fig. 1) shows that the situation is not clear, mainly in the
presence of a poor data set with high statistical errors.
1-1 © 2006 The American Physical Society
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FIG. 2. The probability densities f�H� of the stochastic
variable H (left panel) and the cumulative probability
P�H 
 h� (right panel), are presented for all data sets.
Theoretical probabilities observed under a Poisson statistics
are also shown.
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Recently, Constable [18] raised two main statistical
features to the attention of the scientific community,
namely: (i) the distribution of events shows a paucity of
short intervals; (ii) the rate of occurrence of events is time
dependent, � � ��t�. The author investigated the temporal
distribution of ��t�, showing that a Poisson model with a
monotonic rate, either increasing or decreasing, is not a
good model for the reversal process. On the contrary,
reversals could be perhaps modeled as a renewal Poisson
process with a rate that must change sign at some interval
before 158 My [18]. In any case, modeling ��t� over the
entire time interval is not an easy task (cf. also
Refs. [17,20]). Moreover, in this situation, namely, when
the rate � depends on time, the distribution of persistence
times remains without physical meaning and cannot be
used to determine the Poisson character of events [21].

The problem is perhaps more general than what we
present here, because abrupt flow reversals have been
found also in the large-scale circulation during turbulent
Rayleigh-Benard convection [22], or in the wind direction
in atmosphere [23]. The conjecture that reversals are
Poisson events is made in all cases. Here, starting from
the above experimental evidences, and using a simple
statistical test on some databases, we will investigate
whether a conjecture based on the occurrence of a
Poisson process for reversals is correct or not. We will
show that this is not the case, and that geomagnetic rever-
sals are clustered in time, a result which stems from the
presence of memory in the process generating polarity
reversals.

Under the experimental evidence that the rate of rever-
sals is not constant, we can test, as a zeroth order hypothe-
sis, whether an approach based on the occurrence of a local
Poisson process is correct or not. In other words, according
to Constable [18], it can be conjectured that (hypothesis
H0), even if it cannot be decided whether globally the
reversals stem from a Poisson process, an underlying
time-varying Poisson process could be assumed to origi-
nate the geomagnetic reversals. Since the reversal rate ��t�
is not known, we have to build up a test which is indepen-
dent on the rate �. This can be done through a measure
used previously in the framework of solar flares [24,25].
We introduce a statistical quantity that is nothing but the
suitably normalized local time interval between reversals.
Let us consider the time sequence of reversals as a point-
like process and suppose that each reversal occurs at the
discrete time ti. Let �ti � minfti�1 � ti; ti � ti�1g and let
�i be either �i � ti�1 � ti�2 (if �ti � ti � ti�1) or �i �
ti�2 � ti�1 (if �ti � ti�1 � ti), so that �ti and �i are the
two persistence times following or preceding a given re-
versal at ti. If the local Poisson hypothesis H0 holds, both
�ti and �i are independently distributed according to an
exponential probability density: f��t� � 2�i exp��2�i�t�
and f��� � �i exp���i�� with local rate �i. Then, under
the hypothesis H0, the stochastic variable H, defined as
12850
H��ti; �i� �
2�ti

2�ti � �i
(1)

is uniformly distributed in �0; 1	 and has cumulative dis-
tribution P�H 
 h� � 1� h, independent on �i [25]. In a
process where �is are systematically smaller than 2�tis,
clusters are present and the average value of H is greater
than 1=2. On the contrary, when the underlying process is
characterized by voids, the average value of H is less
than 1=2. From time series, it is easy to calculate the
probability P�H 
 h� and the probability density function
f�H�.

We apply the above test to four different sequences of
geomagnetic polarity reversals, namely, to the already
mentioned CK95, to H68, HA97, and KG86 [26]. We
calculate the probability density function f�H� reported
in Fig. 2 (left panel). As can be seen, a significant deviation
from the uniform distribution is evident in all data sets, the
departure of polarity reversals from local Poisson statistics
stemming from the presence of clusters. Then a clear
deviation of the observed cumulative probability P�H 

h� from a linear law (cf. Fig. 2, right panel), expected under
H0, is obtained. A Kolmogorov-Smirnov (KS) test applied
to the cumulative distributions confirms that the assumed
hypothesis H0 is not reliable and must be rejected (the
significance level of the KS test being smaller than 0.5%
for all data sets).

To further characterize the origin of the departure of
polarity reversals from a local Poisson process, we try to
describe the statistics of persistence times with a Lévy
process. The Lévy functions are stable, and can be obtained
from the central limit theorem by relaxing the hypothesis
of finite variance [27]. To avoid problems arising from the
infinite variance, which is unlikely in real physical pro-
cesses, a truncated Lévy flight distribution (TLF) has been
1-2
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proposed [28] introducing a cutoff in the standard Lévy.
The process can be generated by a random variable x ac-
cording to the distribution function f�x� � e��jxjjxj�1��,
where � represents the cutoff rate and � is the characteristic
exponent. It can be shown [29] that the limit distribution
P�z� of the sum z of random variables x can be computed,
for � � 1, by the following integral

P�z� � C
Z 1

0
dk cos�zk� exp

�
��

cos���=2�

�
2��z2 � �2��=2 cos�� arctan�jzj=��	

����� sin����

�
; (2)

where C is a normalization factor and ���� is the usual
gamma function. For � 
 2 we recover a normal random
process, the result of the integration being a Gaussian PDF,
while smaller values of � represent increasing deviation
from Gaussianity. We thus fitted the measured cumulative
PDF of persistences P��t 
 T�, computed as described
above and reported in Fig. 3, with Eq. (2). The equation
has been numerically integrated using a standard
minimum-�2 procedure. We obtained the best-fit parame-
ters � � 1:09� 0:1, and � � 0:15� 0:04 My�1 with a
reduced �2 ’ 0:5.

The possibility of reproducing with a Lévy function the
cumulative distribution of persistence times indicates both
that the process underlying the polarity reversals is statis-
tically self-similar in time, and that a certain amount of
memory, due to long-range correlations, is present in the
process. From a physical point of view we could expect
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FIG. 3. The cumulative probability P��t 
 T� as a function of
T (symbols) obtained from the CK95 database (vertical bars
represent statistical errors). The full line represents the fit ob-
tained with the truncated Lévy function (2). The best-fit parame-
ters are � � 1:09� 0:1 and � � 0:15� 0:04.
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that the dynamics of the fluid earth core is affected by its
history, thus generating correlations among reversals. This
feature has recently be observed for the solar dynamo [30].
Of course a lot of different random processes can repro-
duce the departure from a Poisson statistics. Only the next
generation of simulators will be able to produce data sets
with enough reversals to allow us to investigate in detail the
occurrence of long-range correlations in 3D global MHD
simulations of geodynamo. In this framework, statistical
analysis on real data, among others, play the key role of
discriminating among different random processes that can
reproduce the departure from Poisson statistics, thus in-
creasing our knowledge of the geodynamo process.
Dynamical models can help us because they describe,
with only few physical ingredients, some gross features
of the enormous complexity of the geodynamo process. In
this perspective it is useful to compare the statistics of
reversals observed in toy models with statistics obtained
on real data sets.

As an example, we investigate the sequence of random
reversals generated by a standard numerical analysis of the
two-disk chaotic geodynamo model [9]. The model, known
as ‘‘Rikitake dynamo,’’ is described by the following ordi-
nary differential equations: dx=dt � �x� yz, dy=dt �
�y� x�z� 15=4�, and dz=dt � 1� xy (in the following
called model A). The cumulative distribution of H, ob-
tained by the times of reversals of the variable x�t�, has
been reported in Fig. 4. It is evident that the chaotic
dynamics of the model is responsible for the presence of
correlations among the reversals. As a further example we
investigate a dynamical model [14] based on stochastic
excitation of the axisymmetric component of the magnetic
field (model B), that reads: dx=dt � �1� x2�x� V11x�
V12y� V13z, dy=dt � �ay� cz� V21x� V22y� V23z,
and dz=dt � cy� az� V31x� V32y� V33z. The Vij�t�
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FIG. 4. The probability densities f�H� of the stochastic
variable H (left panel) and the cumulative probability
P�H 
 h� (right panel), are presented for both models A
and B. Theoretical probabilities observed under a Poisson sta-
tistics are also shown.
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are 9 independent random functions of time, with zero
mean and equal rms magnitude, that are renewed after a
time �c. We use the standard parameters a � 2, c � 5,
�c � 0:01, and D � hV2

iji�c, where D � 0:4 [14]. The
cumulative distribution of H (Fig. 4), calculated by using
the times of the random reversals of the variable x�t�, has
been reported in Fig. 4. Even in this case a departure from a
Poisson distribution is observed, due to the correlations
introduced through �c.

Even if the chaotic dynamics within the Rikitake dy-
namo roughly reproduces the presence of clustering among
reversals, a look at Fig. 4 reveals that in model A the
departure from the local Poisson distribution seems to be
affected by the presence of sudden jumps in the cumulative
distribution of H. Say the reversal time series x�t� presents
few recurrent persistence times of equal extent. On the
other hand, the model B shows a different departure from
Poisson statistics, that is mainly due to both very low
values and, even if in minor extent, to very high values
of H. The time behavior of reversals in the model B is then
hardly compatible with the clustering process evidenced
through our analysis. Further toy models based on com-
pletely random external triggers of reversals (e.g., stochas-
tic resonance) cannot describe the geodynamo process.

In conclusion, we investigated the statistics of persis-
tence times between geomagnetic reversals. We applied a
statistical test, showing that geomagnetic reversals stem
from an underlying process that is far from being locally
Poissonian, as currently conjectured [18]. A Lévy function
is able to nicely fit the probability distribution of persis-
tence times. Although not investigated up to now in a
geophysical framework, our results can be interpreted as
a strong evidence for the presence of correlations between
reversal events. These correlations arise from some degree
of memory in the underlying geodynamo process [7,31]
that gives rise to clustering of reversals.
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