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Inference of DNA Sequences from Mechanical Unzipping: An Ideal-Case Study
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The performances of Bayesian inference to predict the sequence of DNA molecules from fixed-force
unzipping experiments are investigated. We show that the probability of misprediction decreases
exponentially with the amount of collected data. The decay rate is calculated as a function of biochemical
parameters (binding free energies), the sequence content, the applied force, the elastic properties of a
DNA single strand, and time resolution.
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FIG. 1. Mechanical unzipping of a � phage. (a) The extremi-
ties of the molecule are stretched apart under a force f while
their distance x is measured. The fork at location n (number of
open base pairs) moves backward or forward with rates rc and
ro. (b) Free-energy landscape G�n; �� versus n for the first
450 bases and force f � 16:4 pN. Down and up arrows indicate,
respectively, a local minimum in n � 50 and two maxima in n �
232 and n � 327. (c) Time traces of n (for forces ranging from
15.9 to 17.4 pN) show a stick-slip behavior: Plateaus correspond
to the deep minima of G and are separated by rapid unzipping
jumps.
DNA molecules are the support for genetic information,
and knowledge of their sequences is essential from the bio-
logical and medical points of view. State-of-the-art DNA
sequencing methods rely on biochemical and gel electro-
phoresis techniques [1] and are able to correctly predict
about 99.9% of the bases. They were massively used over
the past ten years to obtain the human genome (and those
of other organisms). Nevertheless, the quest for alternative
(cheaper and/or faster) sequencing methods is an active
field of research. In this regard, single molecule micro-
manipulations are of particular interest. Among them are
DNA unzipping under a mechanical action [2–6] or due to
translocation through nanopores [7], the observation of the
sequence-dependent activity of an exonuclease [8,9], the
optical analysis of DNA polymerization in a nanochip de-
vice [10], and the detection of single DNA hybridization
[11].

Hereafter, we focus on mechanical unzipping [Fig. 1(a)],
first realized by Bockelmann and co-workers [2,3]. In their
experiment, the strands are pulled apart under a constant
velocity. The force is measured and fluctuates around
15 pN for the �-phage DNA (a 48 502 base long virus),
with higher (lower) values corresponding to the unzipping
of GC (AT) rich regions. DNA (and RNA) molecules can
also be unzipped under a constant force while measuring
the distance between the open strands [4–7]. Various theo-
retical works have studied and reproduced the unzipping
signal related to a given sequence [3,12–17]. We address
here the inverse problem: Given an unzipping signal, can
we predict the underlying DNA sequence? Based on a
simple modeling of the unzipping dynamics which in-
cludes both thermal noise and the fluctuations of the open
strands, we find that perfect prediction is possible provided
enough experimental data are collected. The necessary
amount of data is calculated as a function of the biochemi-
cal parameters (base pair energies), the force, the elastic
properties of DNA single strands, and time resolution.

Let bn � A, T, C, or G denote the nth base along the
50 ! 30 strand (the other strand is complementary) and
B � fb1; b2; . . . ; bNg the whole sequence. The free-energy
06=96(12)=128102(4)$23.00 12810
excess when the first n base pair of the molecule are open
with respect to the closed configuration is

G�n;B� �
Xn

m�1

gbm;bm�1
0 � ngss: (1)

gbn;bn�1
0 is the binding energy of base pair (bp) n [18]; it

depends on the nearest bp due to stacking effects. gss is the
work needed to stretch an open bp under a force f; accord-
ing to the modified freely jointed chain model [12], gss �
2f‘ ln�sinh�z�=z�=z, where z � ‘0f=kBT, and ‘0 � 15 �A
and ‘ � 5:6 �A are, respectively, the Kuhn and effective
nucleotide lengths. The free-energy landscape G�n; ��
associated to the sequence � � f�1; �2; . . . ; �Ng of the
2-1 © 2006 The American Physical Society
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FIG. 2. Signal distributions P for the sequences � and B; the
horizontal axis symbolizes the N2-dimensional space of signals
S. When the number R of unzippings increases (from left to
right), distributions become more and more concentrated.
Vertical dotted lines mark the sets of signals having equal
probabilities with both distributions; the dark area is the proba-
bility �B (3) that Bayesian prediction is erroneous.
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phage is shown in Fig. 1(b). We model the unzipping of the
molecule as a one-dimensional biased random walk for the
fork position (number of open bp) n in this landscape. Ele-
mentary opening (n!n�1) and closing (n!n�1) tran-
sitions happen with probabilities rbn;bn�1

o � r expfgbn;bn�1
0 g,

rc � r expfgssg per unit of time, respectively [Fig. 1(a)].
This choice for the rates has been shown [13] to reproduce
quantitatively the behavior of unzipping experiments on
short polynucleotides [4], with a typical frequency r ’
106–7 sec�1. We use Monte Carlo (MC) dynamics to simu-
late this unzipping process. The output is a time trace T �
fni; i � 1; 2; . . .g of the fork positions at discrete time i	
�, where � is the inverse bandwidth; see Fig. 1(c).

We start by preprocessing our time trace T to obtain a set
S whose N 	 N elements Sn;n0 are the numbers of transi-
tions n! n0, i.e., of pairs �ni; ni�1� � �n; n0� in T [19].
As our model is Markovian, the knowledge of higher or-
der transitions, e.g., n! n0 ! n00, does not convey any
further information. For this reason, S is called signal in
the following. Information can be accumulated through
repeated unzippings. Given R time traces Tj, j �
1; 2; . . . ; R, the total signal S is simply the sum of each
one of the signals Sj.

Our dynamical model implicitly defines the distribution
P �SjB� of signals given the sequence. The inverse prob-
lem, i.e., the prediction of the sequence given some signal,
can be addressed within the Bayesian inference framework
[20]. The probability that the DNA sequence is B given an
observed S is

P �BjS� �
P �SjB�P 0�B�

P �S�
: (2)

The value of B that maximizes this probability, B
�S�, is
our prediction for the sequence. In the absence of any
a priori information about the sequence, P 0�B� is the flat
distribution, equal to 4�N . The maximization of P �BjS�
over B then reduces to that of P �SjB�.

As the signal is stochastic, the most likely sequence is
not necessarily the correct one. Fortunately, errors are
highly unlikely when R is large. More precisely, the rate
of predicting some wrong sequence B � �

�B � probability�B
�S� � B� � e�R=RB; (3)

where the probability is taken over the distribution P �Sj��
of signals, decreases exponentially fast with R. RB in (3) is
interpreted as the (minimal) number of unzippings neces-
sary to discard B from the candidates to the true sequence.
Its value depends on the force, the bandwidth, the phage
sequence, etc. Scaling (3) can be understood from a simple
concentration argument. Let B be a sequence distinct from
�. Figure 2 symbolizes the signal distributions associated
to B and �. If the measured signal S is such that P �Sj��<
P �SjB�, we erroneously infer that the true sequence is B.
The probability of such a misprediction �B is given by the
dark area in Fig. 2. The central limit theorem teaches us
12810
that, as the number R of unzippings increases (left to right
in Fig. 2), the distributions become more and more peaked
with standard deviation �� 1=

����
R
p

. The error �B is given
by the Gaussian tail exp��cB=�2�2�� and decreases expo-
nentially fast with R; see the area shrinking in Fig. 2.
Hence, (3) with RB � 2=cB. RB can be calculated as a
function of the sequence B with large deviations tech-
niques. Because of space limitations, we do not give our
expression for RB in full generality but restrict to the two
limiting cases of high and low bandwidths.

In the ideal case of infinite bandwidth (�! 0), jumps
jni�1 � nij by more than one bp between two measures are
very unlikely. Nonzero transition numbers are Sn;n �
tn=�, where tn is the time spent by the fork on base n
and the numbers Sn;n�1 are openings and closings of the
nth bp. The probability of this signal reads, up to a
sequence-independent factor,

P �SjB� /
Y

n

�rbn;bn�1
o �Sn;n�1rSn;n�1

c e�tn�r
bn;bn�1
o �rc�: (4)

B
 is easily found using the Viterbi algorithm [20,21]. The
procedure is equivalent to a zero temperature 4	 4 trans-
fer matrix technique exploiting the nearest-neighbor nature
of couplings between bases in (4). In practice, we first
generate R unzipping signals by a MC procedure on the
phage sequence. Then we use the Viterbi procedure (which
ignores the phage sequence) to make a prediction for the
sequence B
. The quality of prediction on base n is esti-
mated through the failure rate �n � probability�b
n � �n�,
where the probability is computed over different MC runs,
each including R unzippings. Figure 3 shows the error �n
for R � 1 (continuous curve) for the first 450 bases at a
force of 16.4 pN. Values range from 0 (perfect prediction)
to 0.75 (random guess of one among four bases).
Comparison with Fig. 1(b) shows that �n is small in the
flattest part of the free-energy landscape (350< n< 450)
or in local minima, e.g., the n � 50 base preceded by
4 weak bases and followed by 4 strong bases (. . .TTTA-
A-GGCG. . .). Conversely, bases that are not well deter-
mined correspond to local maxima of the landscape, e.g.,
2-2
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FIG. 4. (a) Fraction � of mispredicted bases for the � phage vs
the number R of unzippings, averaged over 1000 samples of R
unzippings, and for forces of 15.9, 16.4, and 17.4 pN (from
bottom to top). (b) Same as (a), but we discriminate only among
weak and strong basis.
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FIG. 3. Top: Probability �n of an error vs n, for the first 450 bp
of the � phage at f � 16:4 pN. The solid lines correspond to
R � 1 unzipping, dotted lines to R � 40. Bottom: Theoretical
values for the decay constants Rn. For instance, base 232 (arrow)
is characterized by R232 ’ 10 and is not (respectively, well)
predicted with R � 1 (respectively, R � 40) unzippings.
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bases n � 327; 328 between 7 strong and 7 weak bases
(. . .GCCGCCG-TC-ATAAAAT. . .).

Performances are greatly improved by collecting infor-
mation from multiple unzippings. Figure 3 (dashed curve)
shows the drop in �n when R increases from 1 to 40; the
intensity of the decay depends on the base index n. From
(3), we indeed expect �n � e�R=Rn at large R [22], where
Rn is the maximum of RB over the sequences B with bn �

�n. The exact expression for Rn is involved [21] but is
accurately approximated by

Rn ’
8

vn
	max

b��n
����n�1;b

�n�1;�n
�2 � ��b;�n�1

�n;�n�1
�2��1; (5)

with �x;zx;y � gx;z0 � g
x;y
0 ; vn is the average number of visits

to bp n (transitions n! n� 1) during one unzipping and
is calculated from transient random walk theory [21].
Theoretical values for Rn from (5) are shown in Fig. 3.
Rn varies from 0.1 to 45 with the base index n, in excellent
agreement with the observed decay of �n between R � 1
and 40. The average fraction of mispredicted bases � �
1
N

P
n�n is a superposition of exponentials with n dependent

decay constants and decreases very fast with R; see
Fig. 4(a).

The dependence of � upon the force and the biochemical
parameters in Fig. 4 reflects the one of Rn. As the force f
decreases, keeping the duration of the experiment fixed,
fewer and fewer bases are unzipped, but these bases are
visited more and more often by the fork [Fig. 1(c)]. These
visits act as effective repetitions of the experiment; thus,
the real number of unzippings necessary for good predic-
tion, Rn, diminishes as 1=vn [21]. Figure 4(a) confirms that
the quality of prediction drastically improves (at fixed R)
when f is lowered at a price of opening less and less bases
in the same amount of time [Fig. 1(c)]. Most errors are due
to the difficulty of distinguishing A from T and G from C.
The probability that a weak (A or T) base is confused with
12810
a strong one (G or C), or vice versa, is plotted in Fig. 4(b).
The decrease of the error � with R is much faster for AT vs
GC [Fig. 4(b)] than for complete [Fig. 4(a)] recognition.
This can be explained from the scaling of Rn with the free-
energy difference � between the bases to be recognized (5).
We have � ’ 2:8 to distinguish weak (AT or TA) from
strong (CG or GC) bp [18], while complete recognition
between the 4 bp types rather corresponds to � ’ 0:5. The
decay constants are, respectively, Rn ’ 1 and Rn ’ 30, in
agreement with Figs. 4(b) and 4(a).

In practice, the bandwidth is limited by the viscous
friction on the bead, the stiffness of the trap and linkers,
with a current value of �1 kHz [3,23]. The delay between
measures �� 1 ms is larger than the opening time � of an
AT bp estimated to a fraction of microseconds [13]. The
displacement of the fork D � jni�1 � nij � �=�� 1000
is well above the high bandwidth limit D � 1, previously
studied. From the general concentration argument of
Fig. 2, perfect sequence prediction is still possible but
requires more unzippings. Calculations confirm that Rn is
a growing function of � [21], with Rn / � in the low
bandwidth limit �
 �.

This low bandwidth case, the hardest one as far as
inference is concerned, can be understood in the case of
short molecules, say, �10 bp. Then � � 1 ms is of the
order of the equilibration time of the random walk in the
landscape of Fig. 1(b). The probability of the n! n0

transition in a time trace is essentially independent of n,
and the probability of the signal S reads

P �SjB� �
�Rt=��!Q
n
Un!

Y

n

pB�n�Un ; Un �
X

m

Sm;n: (6)

Here pB�n� is the equilibrium measure with free energy (1)
and t the duration of one unzipping. We find that �B obeys
the scaling (3) with

RB �
�

t
	 max

0<�<1

��������ln
X

n

p��n��pB�n�1��
��������
�1
: (7)

We have considered the sequence ��30� made of the first
N � 30 bp of the phage at its equilibrium force, fc �
17 pN. The most dangerous sequence B, i.e., the one
2-3
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with the largest RB, is obtained from ��30� through a mu-
tation CG! GC of the 15th and 16th bp, with the result
RB 	 t ’ 20 s. In other words, ��30� can be recognized
provided the time of the experiment is larger than 1 min.

Checking this prediction numerically is harder than in
the high bandwidth case. Indeed, no exact and fast (running
in a time growing polynomially withN andD) algorithm is
known to infer the most likely sequence in the generic case
of jumps of range D. We have extended the D � 1 Viterbi
procedure through the use of a 4D 	 4D transfer matrix
[21]. Our algorithm has an execution time linear in N but
exponential in D and allows us to infer successfully se-
quences up to D� 10 only. For the ��30� example above,
where D � 30, we have built a search algorithm, working
in polynomial time but not guaranteed to find the most
likely sequence. Nevertheless, ��30� is perfectly recovered
with 100 s time traces, in very good agreement with theory.

Real experiments give access to the extension x of the
open DNA (ssDNA) strands (with <1 nm resolution [24])
and not to the number n of open bp [Fig. 1(a)]. Each strand
is made of n monomers modeled as springs with stiffness
constant K ’ 170 pN=nm at f � 16 pN and room tem-
perature [12]. The distribution A�xjn� of the extension x
for a given n is roughly Gaussian, with mean nx0, where
x0 � dgss=df ’ 0:9 nm is twice the average extension of a
ssDNA monomer, and standard deviation

���
n
p
�x, where

�x �
������������������
2kBT=K

p
’ 0:2 nm [25]. With Rouse dynamics

[17], the longest relaxation time is, denoting the viscosity
of the solvent by � , tr�n� � �=�K�2� 	 �2n�2 � 100n2 ps.
ssDNA reaches equilibrium between two measures when
tr�n�<�. Thus, for molecules with<100 bp, the stochas-
tic evolution for x is Markovian for delays of the order of �
and above. The information in a time trace of the extension
fxi; i � 1; 2; . . .g is contained in the density S�x; x0�dxdx0 of
transitions from xi 2 �x; x� dx� ! xi�1 2 �x

0; x0 � dx0�.
Our concentration argument of Fig. 2 can be repeated with
Sn;n0 replaced with S�x; x0�. Formula (3) for the probability
of predicting sequence B � � still holds but with a larger
decay constant RssB than in the absence of ssDNA fluctua-
tions. In particular, the number of unzippings necessary for
a reliable prediction of base n, Rssn ’ Rn 	 ��x=x0� 	

���
n
p

,
increases as the square root of n whatever the delay �. The
time required to correctly predict ��30� with a low band-
width remains of the order of 1 min. In the high band-
width limit, Rssn range from 10 to 100 for n � 100.
Estimating the time for one unzipping to 1 s at 16.4 pN
[Fig. 1(b)], it would take a few minutes to acquire the
information; a shorter time would be found at lower
temperatures. This time is not compatible with the large
drift of simple optical trap setups (�10 nm=min [3]) but
12810
requires the use of double optical traps, leading to a neg-
ligible drift <5 nm=h [26].
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