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Surface Criticality and Multifractality at Localization Transitions
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We develop the concept of surface multifractality for localization-delocalization (LD) transitions in
disordered electronic systems. We point out that the critical behavior of various observables related to
wave functions near a boundary at a LD transition is different from that in the bulk. We illustrate this point
with a calculation of boundary critical and multifractal behavior at the 2D spin quantum Hall transition
and in a 2D metal at scales below the localization length.
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Localization-delocalization (LD) transitions in disor-
dered electronic systems represent a remarkable class of
quantum phase transitions. One of their striking features is
that moments of wave functions near a LD transition are
characterized by a set of independent critical exponents
[1]. Criticality of the wave functions manifests itself in
their multifractality (MF) [2,3], which has been studied
analytically and numerically for a variety of systems: the
Anderson transition in d � 2� �, 3, and 4 dimensions
[1,4], as well as weak MF [5], random Dirac fermions
[6], integer quantum Hall (IQH) [7], spin quantum Hall
(SQH) [8] transitions in two dimensions, and power-law
random banded matrices [9].

It is known that at conventional phase transitions, differ-
ent critical behavior occurs at a boundary, as compared to
the bulk of the sample [10]. This is especially well under-
stood in two dimensions where methods of conformal field
theory (CFT) are available [11].

In this Letter we propose to extend the concept of
surface criticality to LD transitions. Such an extension
has several potentially important applications. First, LD
transitions are studied experimentally mainly through
transport measurements, which are performed by attaching
leads to the boundary of a finite sample. With such a setup
it is feasible to measure surface critical behavior directly.
Second, we will show that even if the MF of wave functions
in the whole sample is studied, the surface effects are
fundamentally important. Further, LD transitions in two
dimensions are expected to be described by certain CFTs.
Such a description remains elusive for the primary example
of the IQH transition, though some proposals have been put
forward [12,13]. Studying the MF of wave functions near a
surface is expected to help identify the CFT for the IQH
transition and similar systems.

Let us start with a brief review of bulk MF in the context
of LD transitions. The MF of wave functions  �r� at a LD
transition is characterized by the scaling of moments of
j �r�j2 with system size L:
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Ldhj �r�j2qi � L��q ; �q � d�q� 1� ��q; (1)

where h� � �i denotes the disorder average. Note than one
often introduces fractal dimensions Dq via �q�Dq�q�1�.
In a metal Dq � d, while at a critical point Dq is a non-
trivial function of q, implying the MF of wave functions.
Nonvanishing anomalous dimensions �q � �q� 1��Dq �

d� distinguish a critical point from a metallic phase and
determine the scaling of wave function correlations.
Among them, �2 < 0 plays the most prominent role, gov-
erning the spatial correlations of the intensity j j2:
L2dhj 2�r� 2�r0�ji � �jr� r0j=L��2 . This equation, which
in technical terms results from an operator product expan-
sion of the field theory [14], can be obtained from (1) by
using the fact that the wave function amplitudes become
essentially uncorrelated at jr� r0j � L. Scaling behav-
ior of higher order spatial correlations, hj 2q1�r1� 	
 2q2�r2� � � � 2qn�rn�ji, can be found in a similar way.
Above, the points ri were assumed to lie in the bulk of a
critical system. In this case we denote the multifractal
exponents by �b

q, �b
q, etc.

In finite electronic systems, wave functions vanish on
the boundary. Therefore, to assign a meaning to the MF on
the boundary, we have to interpret surface correlation
functions in the sense of the theory of critical phenomena
[10,11]. Specifically, by ‘‘points on the boundary’’ we
mean points that lie close to it, as compared to other
distances, e.g., a few lattice spacings away.

With this caveat in mind, we now generalize the notion
of MF to systems with boundaries. First, we note that in
general even the average value of j �r�j2 for r at the
boundary may be nontrivial, hj �r�j2i / L�d��. In particu-
lar, � can be nonzero in systems with unconventional
(chiral or Bogoliubov–de Gennes) symmetry [15], which
are attracting particular interest in connection with physics
of disordered superconductors. For the moments of the
intensity, we get in analogy with Eq. (1)

Ld�1hj �r�j2qi � L��
s
q ; (2)
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�s
q � d�q� 1� � q�� 1��s

q; (3)

with a new set of surface multifractal exponents �s
q, �s

q,
which are in general independent of their bulk counterparts
[16]. The normalization factor Ld�1 is chosen such that
Eq. (2) yields the contribution of the surface to the inverse
participation ratios hPqi � h

R
ddrj �r�j2qi conventionally

studied in the framework of the MF analysis. The expo-
nents �s

q as defined in Eq. (3) vanish in a metal and govern
statistical fluctuations of wave functions at the boundary,
hj �r�j2qi=hj �r�j2iq � L��s

q , as well as their spatial cor-
relations, e.g., L2�d���hj 2�r� 2�r0�ji � �jr� r0j=L��

s
2 .

In fact, these notions can be further generalized. First,
for multipoint correlation functions, some points may be in
the bulk while the rest are on the surface. Then the scaling
behavior will be described by mixed bulk-surface expo-
nents. Second, surface and mixed exponents will sensi-
tively depend on the global geometry of the boundary. For
example, if the point r in Eq. (2) lies near the edge of a
wedge with the opening angle �, multifractal exponents
will continuously depend on �. We relegate the analysis of
these generalizations to a future publication [17] and con-
centrate here on the fundamental surface exponents �s

q, �s
q.

We now illustrate these points in the case of the 2D SQH
plateau transition, which belongs to symmetry class C (in
the classification of Ref. [15]), relevant for the description
of quasiparticle transport in singlet superconductors with
broken time-reversal symmetry [18]. A remarkable feature
of the SQH effect is that a number of basic observables can
be calculated exactly, as was discovered in Refs. [19,20],
via a mapping of the corresponding network model [21]
(similar to the IQH network of Ref. [22]) to the problem of
classical percolation. This mapping was extended in
Ref. [8] to extract analytical values of the bulk exponents
�b

2 � �1=4, �b
3 � �3=4.

In what follows, we generalize this mapping to the SQH
network with a boundary and use it to extract new surface
critical and multifractal exponents. The SQH network
consists of directed links r that carry doublets of com-
plex fluxes  ��r� representing propagation of spin 1=2
particles. Effects of disorder are introduced through ran-
dom SU(2) scattering matrices on the links. At each node
the scattering from two ingoing to two outgoing links is
described by the (spin-independent) matrix S, with S11 �

S22 � �1� t2�1=2, S12 � �S21 � t. The value t � 1=
���
2
p

corresponds to the critical point of the SQH transition.
In order to study the effect of boundaries, we impose

reflecting boundary conditions along one direction. This
does not affect the symmetry of the system, which enables
us to retain the mapping to percolation. In technical terms,
within the approach of Ref. [19], supersymmetry (SUSY)
is preserved at the boundary nodes of the network model.
We have also checked [17] that the SUSY method can be
extended to the two- and three-point functions needed to
extract �s

q with q � 2; 3, and yields results identical with
the path integral approach developed in Refs. [8,20].
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We calculate first the average local density of states
(LDOS) at a point r1 on the boundary that will allow us
to find the average of the intensity j ��r1�j

2. The LDOS
can be expressed in terms of one-point Green’s functions
and becomes, when mapped to percolation,

h��r1; ��i � �1=2��
�

1�
X
N

P�r1;N� cos2N�
�
; (4)

where � is the energy and P�r1;N� is the probability of a
N-link hull passing through r1, in analogy with [20]. The
corresponding surface critical exponent is xs

1 � 1=3 [23],
which should be contrasted to its bulk value xb

1 � 1=4. The
latter value implies that the percolation hull has fractal
dimension 2� xb

1 � 7=4, so that P�r; N� � N�8=7 for r in
the bulk. This yields, according to Eq. (4), the density of
states scaling ���� / �x

b
1=�2�x

b
1� � �1=7 [19,20]. Note that

2� xb
1 � 7=4 is the dynamic exponent governing the scal-

ing of energy with the system size L at SQH criticality, so
that the level spacing at � � 0 (and thus the characteristic
energy of critical states) is �� L�7=4.

In our case, when the point r1 is located at the surface,
we find P�r1; N� � N

�1�xs
1=�2�x

b
1� � N�25=21 and the

LDOS scaling ��r1; �� / �
xs

1=�2�x
b
1� � �4=21. For the wave

function at the boundary, this implies

L2hj ��r1�j
2i � Lx

b
1�x

s
1 � L�1=12: (5)

Therefore, the average intensity of a critical wave function
is suppressed at the boundary with the exponent� � 1=12.
A similar calculation for the conductance between two
point contacts r1 and r2 located at the boundary [24] yields
scaling with exponent 2xs

1 � 2=3,

gspt�r1; r2� / jr1 � r2j
�2=3: (6)

We turn now to the multifractal exponents. To calculate
�s

2, we consider the correlation function [8]:

�2���2 ~D�r1; r2; �1; �2� �

�X
ij�	

j i��r1�j
2j j	�r2�j

2

	 ���1 � �i����2 � �j�
�
: (7)

To study critical states, we take �1;2 � 0 and broaden delta
functions by �. Using the mapping to percolation, we relate
(7) to percolation probabilities,

~D�r1;r2;z��4
X
N

�1�z2N�P�r1;r2;N��4
X
N;N0
�1�z2N�

	�1�z2N0 �P��r1;r2;N;N0�; (8)

in analogy with Ref. [8]. Here z � e��, P�r1; r2;N� is the
probability of an N-link hull passing through r1; r2, and
P��r1; r2;N;N0� is the probability of an N-link hull pass-
ing through r1 and a different N0-link hull passing through
r2. In view of the cancellation of leading order terms at z!
1, we need to consider the next, subleading term. Using
again the surface critical exponent xs

1 � 1=3, we find,
when both r1 and r2 lie at the boundary,
2-2
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FIG. 1. Surface MF at the SQH transition. The numerical data
confirm analytically found exponents (dashed lines), with devia-
tions as low as 4% (�), 0.5% (�s

2), and 6% (�s
3). Lower panel:

numerical results for the surface MF spectrum �s
q for 0< q <

3:5. For comparison, the bulk spectrum �b
q is also shown, as well

as the analytical results for q � 2; 3.
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FIG. 2. Surface and bulk f��� spectra at the SQH transition
obtained from the data of Fig. 1.
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P�r1; r2;N� � N�25=21r�1=3; r � jr1 � r2j & N4=7:

Substituted in Eq. (8), this gives the value

�s
2 � �x

s
1 � �1=3: (9)

A similar calculation can be done for the three-point
function, with the result

�s
3 � �3xs

1 � �1: (10)

In this case there is no cancellation in the limit z! 1, and
the result conforms with the usual scaling of a three-point
function at the boundary.

We have verified these predictions by direct simulation
of the SQH network. To this end we have numerically
diagonalized [25] the 4L2 	 4L2 discrete time-evolution
operator of the network model and selected, for each
realization of disorder, two eigenstates  i��r� with lowest
quasienergies �i. We found �s

q from the scaling of the
moments hj 2q

i��r�ji averaged over the ensemble of
104–105 systems. As shown in Fig. 1, the numerical data
fully confirm the values of the exponents �, �s

2, and �s
3

obtained above [Eqs. (5), (9), and (10)]. Clearly, numerical
simulations allow us to study also the scaling away from
the analytically accessible values q � 2; 3. In the lower
panel, we show the results for the exponents �s

q [divided by
q�1� q�] in the range of q between 0 and 3.5 and demon-
strate their independence from the bulk exponents �b

q.
We also show in Fig. 2 the singularity spectrum f���,

obtained from ��q� by Legendre transformation. Its mean-
ing is as follows: the number of points r in the sample
where the wave function intensity is j 2�r�j � L�� scales
as Lf���. The difference between the maximal values (2 vs
1) of fb��� and fs��� simply reflects the different dimen-
sionalities of the bulk and the surface. On the other hand,
the difference in the position of the maximum (�b

0 ’ 2:137
vs �s

0 ’ 2:326) and in the width of the curve demonstrates
that at the boundary the typical value of the intensity is
suppressed, while fluctuations are stronger than in the bulk.

We have thus shown that surface MF differs significantly
from that in the bulk. One can now ask the following
question. Imagine that one performs a multifractal analysis
for the whole sample, without separating it into ‘‘bulk’’ and
‘‘surface.’’ Then would the surface exponents play any
role? A naive answer is no: since the weight of surface
points is down by a factor 1=L, one could expect that only
the bulk exponents would matter. This is not true, however.
To illustrate this point, we turn to an example where the
whole multifractal spectrum can be studied analytically.
Specifically, we will consider a 2D weakly localized me-
tallic system (dimensionless conductance g
 1), which
shows weak MF [5] on length scales below the localization
length 
� e��g�

	
, where 	 � 1 (2) for systems with pre-

served (respectively, broken) time-reversal symmetry.
With minor modifications, the formulas below describe
also the Anderson transition in 2� � dimensions.

The bulk multifractal spectrum of this system was ob-
tained via the perturbative renormalization group treatment
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of the underlying field theory (�model) [1] and also within
the instanton approach [5]. The result reads

�b
q�2�q�1���q�1�q�; ���	�g��1�1: (11)

Generalizing this calculation to the surface case, we find

�s
q � 2�q� 1� � 1� 2�q�1� q�: (12)

The factor of 2 in front of the last (anomalous) term can be
traced back to the corresponding enhancement of the return
probability near the surface. Performing the Legendre
transformation, we find the f��� spectra,

fb��� � 2� ��� 2� ��2=4�; (13)

fs��� � 1� ��� 2� 2��2=8�: (14)

These results are illustrated in Fig. 3. When the MF in the
whole sample is analyzed, the lowest of the �q exponents
‘‘wins.’’ It is easy to see that the surface effects become
dominant outside the range q� < q< q�, where q� ’
���1=2 are the roots of the equation �b

q � �s
q. The lower

panel of Fig. 3 shows how this is translated into the f���
representation. The total singularity spectrum is given by
the bulk function fb��� only for �b

� <�< �b
�, where

�b
� � 2 ’ 2�1=2. Outside this range the surface effects

are important. Specifically, f��� is equal to the surface
2-3
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spectrum fs��� for �< �s
� and �> �s

�, where �s
� � 2 ’

4�1=2, while in the intermediate intervals �s
� <�<�b

�

and �b
� <�< �s

� its dependence on � becomes linear
(shown by dashed lines). The latter behavior is governed by
intermediate (between bulk and surface) points with a
distance from the surface r� L	, 0<	< 1; their f���
spectrum is easily found to be f	��� � 	fb��� � �1�
	�fs���. Note that in this case the surface effects modify
f��� in the whole range below f��� ’ 1. Therefore, the
surface exponents affect the multifractal spectrum of the
sample not only for rare realizations of disorder [governing
the negative part of f���] but also in a typical sample.

To summarize, we have developed the concept of sur-
face MF for localization transitions in disordered elec-
tronic systems and have extended the notion of surface
criticality to those transitions. We have calculated surface
critical and multifractal exponents for the SQH transition.
Considering the example of a 2D weakly localized system,
we have shown that the surface criticality may crucially
affect multifractal spectra in systems with boundaries. Our
work opens a new direction of research in the field of
Anderson and quantum Hall transitions. More generally,
it is interesting to study boundary effects for MF in other
stochastic systems.
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