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Magnetic Field Symmetry and Phase Rigidity of the Nonlinear Conductance in a Ring
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We have performed nonlinear transport measurements as a function of a perpendicular magnetic field in
a semiconductor Aharonov-Bohm ring connected to two leads. While the voltage-symmetric part of the
conductance is symmetric in the magnetic field, the voltage-antisymmetric part of the conductance is not
symmetric. These symmetry relations are compatible with the scattering theory for nonlinear mesoscopic
transport. The observed asymmetry can be tuned continuously by changing the gate voltages near the arms
of the ring, showing that the phase of the nonlinear conductance in a two-terminal interferometer is not
rigid, in contrast with the case for the linear conductance.
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A mesoscopic ring can be used as an electron interfer-
ometer in order to compare the electronic phase of elec-
trons traveling through both arms of the ring using the
Aharonov-Bohm (AB) effect. However, it has been shown
that a two-terminal ring does not allow us to measure
directly this phase difference in the linear transport [1]:
The two-terminal conductance shows AB oscillations with
a phase constrained to 0 or� [2–4]. This phase rigidity is a
consequence of microreversibility [5], showing that the
linear conductance of a two-terminal system must be sym-
metric in the magnetic field [1,6]. A direct measurement of
the phase difference is possible only in an open multi-
terminal geometry [7,8].

While the Onsager-Casimir relations hold close to equi-
librium (linear conductance), there is no fundamental rea-
son why far from equilibrium the nonlinear conductance
should still follow this symmetry; i.e., one could expect
G�V; B� � G�V;�B�. It is then natural to ask whether the
phase rigidity would still hold for the nonlinear transport in
a two-terminal ring.

In a phase coherent diffusive system, nonlinear con-
ductance is expected when the bias voltage is larger than
ET=e, where ET is the Thouless energy [9]. Models devel-
oped for noninteracting electrons predict an effect sym-
metric in the magnetic field, which has been observed
experimentally through bias voltage-induced universal
conductance fluctuations [10,11]. The possibility to ob-
serve magnetic field asymmetric nonlinear transport has
been addressed only very recently both theoretically
[12,13] and experimentally [14–17]. The models proposed
there rely on the effects of electron-electron interactions in
noncentrosymmetric systems. Such behavior could be also
expected in AB rings, for which symmetry breaking occurs
due to asymmetries in the phase accumulated in each arm
of the ring.

Here we address the question of the magnetic field
symmetries of the nonlinear conductance in a ring used
as an Aharonov-Bohm interferometer. We have performed
nonlinear dc transport measurements in a ring connected to
two terminals. The current is fitted by a polynomial func-
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tion of the bias voltage, with each coefficient of the decom-
position showing AB oscillations as a function of the
magnetic field. While the odd coefficients are symmetric
in the magnetic field and show strong h=2e oscillations, the
even coefficients are asymmetric in the magnetic field with
weak h=2e oscillations. Furthermore, an electrostatic
change of the phase in one arm of the ring produces a
continuous change of the phase of the asymmetric coef-
ficients, suggesting that the asymmetry is related to the
electronic phase. The symmetry relations can be under-
stood within a simple model using scattering theory. This
simple model, however, cannot explain the weak amplitude
of h=2e oscillations in the even coefficients.

The sample has been fabricated on a GaAs=GaAlAs
heterostructure containing a two-dimensional electron
gas (2DEG) 34 nm below the surface. A back gate has
been used to tune the electron density to 4:5� 1015 m�2

and a mobility of 27 m2�V s��1. The surface of the hetero-
structure is patterned by local oxidation with an atomic
force microscope (AFM), defining depleted regions in the
2DEG below the oxide lines [18]. Figure 1(a) shows an
AFM image of the ring, which is initially connected to
three terminals (labeled 1–3) through quantum point con-
tacts (QPCs). The opening of the QPCs can be controlled
by the three gates labeled LG1–LG3, while the gates PG1–
PG3 control the electron density in each arm of the ring. In
this experiment, the QPC connected to lead 3 is pinched off
by applying a negative voltage on LG3, in order to perform
an effective two-terminal measurement. This is checked by
measuring the current flowing through lead 3, which is
below 10 pA for all measurements and does not depend on
the bias voltage. All measurements have been performed at
1.7 K in a 4He cryostat with a variable temperature insert.

The dc I-V characteristics are measured by applying
voltages V1 � �V=2 and V2 � �V=2 on leads 1 and 2,
through two identical circuits, including I=V converters for
the current measurement [Fig. 1(a)]. This configuration
allows one to minimize circuit-induced asymmetries [14],
and we have checked carefully that interchanging leads 1
and 2 in the setup gives the same results.
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FIG. 2 (color online). Magnetic field dependence of the non-
linear conductance coefficients Gfng, for VPG2 � VPG3 � 0 and
VPG1 � �0:050 V. The dashed curves correspond to the inver-
sion of the plain curves compared to B � 0. An offset of the
magnetic field of 0.2 mT has been corrected.
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FIG. 1 (color online). (a) AFM micrograph of the ring and
scheme of the experimental setup for the nonlinear measure-
ment. The electron paths are sketched by the white lines around
the ring. (b) Nonlinear part of the current-voltage characteristics
taken by applying a symmetric bias voltage V between leads 1
and 2 and measuring the current through lead 1. The nonlinear
part is obtained after subtracting from the current I the linear part
of the fit, i.e., Gf1g�V�V0�. The gate voltages are VPG2�VPG3�
0 and VPG1 � �0:050 V. The traces are taken at two magnetic
fields of approximately the same amplitude but opposite signs:
B � �0:0583 T (dashed line) and B � �0:0570 T (solid line).
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The nonlinear part of a typical I-V characteristic is
shown in Fig. 1(b), for a particular setting of the gate
voltages and for two magnetic fields of the same amplitude
but opposite signs. The I-V curves show a clear nonlinear
behavior at voltages above about 100 �V. Furthermore,
they demonstrate that the conductance is not exactly equal
for opposite magnetic fields.

In order to quantify the nonlinear behavior, the I-V
curve is fitted with a fifth-order polynomial [19], allowing
a voltage offset V0 [20]:

I �
X5

n�1

Gfng�V � V0�
n: (1)

Here Gfng and V0 are fitting parameters. In this decompo-
sition, the odd coefficients (Gf1g; Gf3g; . . . ) correspond to
the voltage-symmetric part of the differential conductance
G�V; B� � dI=dV and the even coefficients (Gf2g; Gf4g; . . . )
to the voltage-antisymmetric part of G�V; B�.

The fitting parameters are shown as a function of the
magnetic field in Fig. 2 for fixed gate voltages. In each
panel, the dashed line corresponds to the same curve as the
plain line but mirrored horizontally at B � 0 in order to
check the magnetic field symmetry. All conductances show
AB oscillations as a function of the magnetic field, with a
period close to 75 mT. This period corresponds to a di-
ameter of the ring of 260 nm, compatible with the litho-
graphic size of the ring. In addition to h=e oscillations, the
odd coefficients show strong h=2e oscillations. It is then
interesting to note that the even coefficients do not show
any significant h=2e oscillations.

It is clear from the uppermost panel that the linear
conductance Gf1g is symmetric in the magnetic field. The
higher-order coefficients show a remarkable behavior.
While the odd coefficients are symmetric in the magnetic
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field within experimental errors, the even coefficients are
not symmetric in the magnetic field.

In order to investigate the asymmetry of the even coef-
ficients further, we have used lateral gates PG1, PG2, and
PG3 [Fig. 1(a)] to modify locally the electron density in the
ring. Earlier experiments have shown that a gate voltage
can tune the electronic phase accumulated along the arms
of the ring through the product kFL, where kF is the Fermi
wave vector and L the length of the ring affected by the
gate [4,7,21–23]. Here we use either the gates PG2 and
PG3 (right arm of the ring) or the gate PG1 (left arm of the
ring) in order to change the phase only in a selected part of
the ring. The two first-order coefficients Gf1g and Gf2g are
shown in Fig. 3 for several gate voltages VPG2 � VPG3 and
fixed VPG1 � 0. The higher-order coefficients show iden-
tical results, namely, odd coefficients behave comparably
to Gf1g and even coefficients to Gf2g. The change in Gf1g is
similar to earlier two-terminal experiments, where the
relative amplitude between h=e and h=2e oscillations is
tuned due to a change of the phase accumulated along the
ring [4,23]. The surprising result is that the phase of the
oscillations of Gf2g changes continuously with the gate
voltage. Up to now, such continuous phase shifts have
been reported only in the linear conductance of multiter-
minal interferometers, where they are directly related to a
change in the phase difference between both arms of the
ring [7,8]. A similar result has been obtained by sweeping
the gate voltage VPG1, keeping VPG2 � VPG3 � 0.

We have evaluated the phase of the oscillating part of
Gf2g, ’, with the formula tan�’� � hGf2g�B� sin�B=B0�i=
hGf2g�B� cos�B=B0�i, whereB0 is the AB period and h� � �i is
the mean taken over the full magnetic field range. Figure 4
1-2
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FIG. 4 (color online). Phase of the magnetic field oscillations
of Gf2g as a function of VPG2 � VPG3 for VPG1 � 0 (circles) and
as a function of VPG1 for VPG2 � VPG3 � 0 (triangles). The
dashed lines are guides to the eye, showing a linear dependence
with slope 0:85�=V (top) and 1:90�=V (bottom).

−0.2 −0.1 0 0.1 0.2

0.7

0.8

0.6

0.5

0.4

2

1

0

FIG. 3 (color online). First- and second-order conductances vs
magnetic field, for several gate voltages VPG2 � VPG3, varying
from �0:125 V (bottom curves) to �0:025 V (top curves), by
steps of 0.025 V. The three upper curves for Gf1g have been
shifted vertically by, respectively, 0.077, 0.155, and 0:232�
e2=h (from bottom to top). The curves for Gf2g have been shifted
vertically by, respectively, 4, 8, 12, 16, 20, 28, and 32�
10�4 A=V2 (from bottom to top). The dashed line in the lower
panel points out the shift of one maximum.
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shows the variation of the phase for both gate sweeps. Both
slopes differ by a factor close to 2, as expected from the
lever arms of these gates, but surprisingly they have the
same sign. A possible explanation is that the phase is not
controlled locally on each arm of the ring, but that each
gate rather affects the electron density in the whole ring.

We now discuss the possible origin of the nonlinear
conductance. While electron heating could explain both
the origin and the symmetry of the odd coefficients, it
cannot explain the even ones, since the temperature should
depend on the electric power. We have checked that non-
linearities on the QPCs depend only weakly on the mag-
netic field. In addition, the different magnetic field
symmetry observed for the odd and even coefficients ex-
cludes thermoelectric effects [24] or spurious circuit-
induced nonlinear effects, which would give the same
symmetry for all terms.

Previous nonlinear transport experiments in AB rings
[10] were explained in terms of scattering theory with a
bias voltage dependent transmission [9]. The transmission
is expected to be modified due to a global shift in the
energy of electronic paths in the ring induced by the finite
bias voltage. An additional effect could come from the
electrostatic Aharonov-Bohm effect, for which an electro-
static potential along the electronic paths modifies the
electronic phase [25]. In our experiment, we are not able
to distinguish both origins of nonlinearities.
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Theoretical studies have shown that the I-V character-
istics of a mesoscopic system are, quite generally, not even
under reversal of the magnetic field because the response
of the screening potential is B-asymmetric at large bias
[12,13]. Such interaction-induced asymmetry was not re-
ported in previous nonlinear measurements on rings [10],
due to the multiterminal nature of these experiments, but it
has been observed very recently in carbon nanotubes [15]
and in semiconductor quantum dots [16,17]. These experi-
ments address the lowest-order nonlinearity Gf2g only.
Hence, our observation that the even (odd) coefficients
Gfng are asymmetric (symmetric) in the magnetic field is
novel. We now demonstrate that this effect follows from
general arguments.

The scattering theory for nonlinear mesoscopic transport
[26] establishes that the current

I �
2e
h

Z
dET�E;U��f�E� eV=2� � f�E� eV=2�	 (2)

depends on the transmission T, which is a functional of the
screening potential U in the mesoscopic conductor. For
simplicity, we assume that U is uniform, though the full
theory takes into account the spatial distribution. In Eq. (2),
f�x� � 1=�1� exp�x� EF�=kBT�, with EF the Fermi en-
ergy. Within the Fermi-Thomas approximation, the in-
duced charge density is a linear function of the external
bias V. Assuming that the density of states is weakly
energy dependent, charge conservation demands that
U�V� � Ueq � uV, where the characteristic potential u �
�@U=@V�eq relates the change in the screening due to a
voltage shift. Such a response is, in general, asymmetric
under B reversal [12]. We emphasize that this effect arises
in the nonlinear regime only since microreversibility re-
quires Ueq�B� � Ueq��B� at equilibrium.

Inserting U�V� in Eq. (2) and expanding in powers of V,
we find at zero temperature:

Gfng �
1

2n�2n!

en�1

h
T�n�1��EF���n;odd � 2u�n;even	: (3)
1-3



PRL 96, 126801 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
31 MARCH 2006
Clearly, since the transmission and its energy derivatives
T�n� are B-symmetric, only the even coefficients are asym-
metric under B reversal. The internal potential depends on
the phase accumulated along both arms, which can be
tuned with gate voltages, thus affecting the magnetic field
asymmetry. This asymmetry arises when the conductor is
asymmetrically coupled to the leads (via scattering or
capacitive coupling [12]). It is very likely that our ring is
geometrically asymmetric, due to the different sizes of the
arms [see Fig. 1(a)] or to randomly distributed defects.

We note, however, that this scenario does not explain the
experimentally observed weak amplitude of h=2e oscilla-
tions in the even coefficients. While h=e oscillations are
due to interference effects between paths going once
around the ring, h=2e oscillations have several possible
origins. They can be due to interference between paths
going twice around the ring [2] or to interference between
time-reversed paths going each once around the ring (the
Al’tshuler, Aronov, and Spivak effect [27]). Interestingly,
the last mechanism is not sensitive to the electric phase
accumulated by the electron along the ring, since both
time-reversed paths will accumulate the same phase. The
fact that we can influence the ratio of h=e and h=2e oscil-
lations in the linear conductance using a gate [see Fig. 3]
shows that both effects contribute to h=2e oscillations.

In conclusion, we have made nonlinear transport mea-
surements in a two-terminal ring. The nonlinear conduc-
tance shows AB oscillations as a function of the magnetic
field. We show that the voltage-symmetric part of the
conductance is symmetric in the magnetic field, while the
voltage-antisymmetric part is asymmetric in the magnetic
field, compatible with the scattering theory for nonlinear
transport. Furthermore, we can tune the phase of the asym-
metry by changing the voltage of gates placed nearby the
ring, which shows that the nonlinear conductance is not
phase-rigid in contrast to the linear conductance.
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