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Electric-Field Effect on the Angle-Dependent Magnetotransport Properties
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We report a novel electric field effect on angular dependent magnetotransport in quasi-one-dimensional
layered conductors with a pair of sheetlike Fermi surfaces. Under tilted magnetic fields and additional
interlayer electric fields, semiclassical electron orbits on two Fermi sheets become periodic at different
magnetic field orientations. This causes double splitting of the Lebed’s commensurability resonance in
interlayer transport, and the amount of splitting allows us to estimate the Fermi velocity directly. We have
successfully demonstrated this effect in the organic conductor �-�BEDT-TTF�2KHg�SCN�4.
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FIG. 1 (color online). Schematic sheetlike Fermi surfaces of
Q1D conductors and electron orbits. Under tilted magnetic
fields, electrons on different Fermi sheets move along dashed
curves with the same slope. When the electric field is applied,
they move along solid curves with different slopes. The deviation
of electron orbits from the Fermi sheets is ignored.
Interlayer magnetoresistance of layered conductors
shows remarkable angular dependence as a function of
magnetic field orientations [1]. Particularly, quasi-one-
dimensional (Q1D) layered organic conductors, such as
�TMTSF�2ClO4, where TMTSF denotes tetramethyltetra-
selenafulvalene, have shown very rich angular effects, the
Lebed resonance [2], the Danner-Chaikin oscillations [3],
the third angular effect [4], and the peak effect [3].
Although the magnetotransport shows nonclassical behav-
iors in some cases [5], most features including these effects
have been explained as semiclassical Femi surface topo-
logical effects [6,7]. They have been well reproduced by
Boltzmann’s magnetotransport theory based on electron
orbital motion on Fermi surfaces [8]. By using the angular
effects, we can study the ratio of band parameters.

In this Letter, we study the effect of electric field on the
magnetoresistance angular effects, particularly on the
Lebed resonance, in Q1D conductors. Electric fields mod-
ify the angular effects through the change of electron
orbital motion. Using the electric field effect, we can obtain
the information not only on the ratio between band pa-
rameters but also their absolute value.

First, we overview the semiclassical picture of magne-
toresistance angular effects in Q1D multilayer systems [8].
Let us consider the simplest band model for Q1D conduc-
tors [3],

E�k� � @vF�jkxj � kF� � 2tb cosbky � 2tc cosckz: (1)

Here, orthogonal crystal axes are assumed with the x axis
parallel to the conducting 1D chains and the z axis normal
to the conducting 2D layers. vF, b, and c are the Fermi
velocity along the 1D chain, the interchain distance inside
each layer, and the interlayer distance, respectively. The
transfer energy tc between two neighboring layers is as-
sumed to be much smaller than the transfer energy tb
between two neighboring chains within the same layer
(tc � tb). Such a system has a pair of sheetlike Fermi
surfaces as shown in Fig. 1.

Under magnetic fields, electrons carry out orbital mo-
tions on two Fermi sheets following the equations of
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motion, @ _k � ��e�v� B, v � �1=@�@E�k�=@k. The inter-
layer conductivity �zz�!� can be evaluated using the
Chambers formula which sums up the contributions from
all orbits [6,8]. When the interlayer transfer energy tc is so
small as to satisfy jBz=Bxj � 2tcc=@vF, we can easily
obtain an analytic formula for �zz�!�.
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Here, N�EF� � 4=�2�bc@vF� is the density of states per
unit volume including spin degeneracy. � is the scattering
time, and J��z� is the �th Bessel function. Equation (2)
corresponds to the lowest order contribution of interlayer
transfer tc to the interlayer conduction [9]. Let us note that
this formula is slightly changed from that in the quantum
mechanical picture [9].

Equation (2) explains most of magnetotransport features
observed in Q1D conductors. dc interlayer conductivity
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FIG. 2. Calculated interlayer conduction in Q1D conductors
under the electric field as a function of magnetic field orienta-
tion. (a) Interlayer current for several electric fields when the
magnetic field is rotated in a plane normal to conducting layers.
(b) Angular dependent pattern of interlayer current for general
magnetic field orientations.
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�zz�! � 0� shows resonant increase when pbeBz=@�
ceBy=@ � 0 (p is an integer). This is the Lebed resonance
at the pth magic angle By=Bz � p�b=c�. In general field
orientations, an electron trajectory sweeps all over the
Fermi sheet, so that the interlayer velocity averaged along
the orbit, hvzi, is zero. On the other hand, at the magic
angles, the electron motion on the Fermi sheets becomes
periodic, and averaged velocity hvzi becomes finite causing
resonant increase of interlayer conduction. The amplitude
of the pth Lebed resonance, Jp
�2tbc=@vF��Bx=Bz��2, os-
cillates when the field is tilted to the 1D axis. This causes
the Danner-Chaikin oscillations. The pth Lebed resonance
shows a maximum peak at �2tbc=@vF��Bx=Bz� � p, so that
all the Lebed resonance maxima satisfy By=Bx �
2tbb=@vF. These maxima converge to a single peak of
the third angular effect at the limit of p! 1. However,
the peak effect cannot be deduced from the lowest order
contribution represented by Eq. (2).

On the other hand, ac interlayer conductivity �zz�!�
shows open orbit cyclotron resonances at ! �
vF�pbeBz=@� ceBy=@�. These resonances have been ob-
served as the ‘‘Fermi surface traversing resonance (FTR)’’
[10] or the ‘‘periodic orbit resonances (POR)’’ [11] in
microwave absorption.

Now, let us consider the effect of electric fields applied
along the stacking direction. The equation of motion
changes to @ _k � ��e�v� B	 ��e�E. Roughly speaking,
in Q1D systems with two Fermi sheets, the electric field
E � �0; 0; Ez� tends to tilt electron open orbits as shown in
Fig. 1. Here, we have to note that the electron orbits deviate
from the Fermi surfaces under electric fields. However, this
deviation is less than 4tc=@vF in the k space, so that the
electron orbits can be treated to exist almost on Fermi
sheets when the warping of the Fermi sheets is small.

If the warping is ignored, electrons on the kx > 0 Fermi
sheet have a group velocity v � �vF; 0; 0�, and electrons on
the kx < 0 sheet have v � ��vF; 0; 0�. In this case, the
electric force ��e�E can be replaced by the virtual
Lorentz force ��e�v� Beff , where the effective magnetic
field is defined as Beff � �0; Ez=vF; 0� for the kx > 0 Fermi
sheet and as Beff � �0;�Ez=vF; 0� for the kx < 0 sheet.
Since electrons on the Fermi sheet then move as if they are
under the magnetic field B	 Beff , the direction of electron
open orbits is tilted from those in absence of electric field.
The Lebed resonance condition is accordingly modified to
�By � Ez=vF�=Bz � p�b=c� or

By
Bz
� tan� sin’ � p

b
c


Ez
vFBz

: (3)

Here, � is the polar angle of B from the z axis, and ’ is the
azimuthal angle of B around the z axis measured from the x
axis. We have to note that the Lebed resonance condition
(3) is different for two Fermi sheets. In other words, under
electric fields, a single Lebed resonance splits into double
resonances, each of which originates from opposite Fermi
sheet.
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Equation (2) can be extended for finite interlayer electric
fields Ez if we could employ the similar calculation as in
(2). The interlayer dc current jz�! � 0� can be approxi-
mately represented as
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(4)

Here, !B � ceEz=@ is the Bloch frequency. We can see
that the interlayer current jz�! � 0� shows resonant in-
crease when the generalized Lebed resonance condition (3)
is satisfied.

Using Eq. (4), we can simulate the angular dependent
interlayer conduction under electric fields. Figure 2(a)
shows the ratio of interlayer current jz and electric field
Ez traced as a function of magnetic field orientation for
several interlayer electric fields. The field configuration is
shown in the inset of Fig. 2(a). Magnetic field with a fixed
strength B is rotated in a plane including the z axis with a
fixed azimuthal angle ’ � 60�. The parameter " �
Ez=vFB indicates electric field strength. In this calculation,
we have assumed a set of band parameters a:b:c �
1:0:2:0:3:7, ta:tb:tc � 1:0:0:1:0:003, and vF �

���
2
p
taa=@

so as to simulate TMTSF compounds. A relaxation time
� � 20=�vFbeB=@� is employed. The ordinate jz=Ez is
normalized by the factor N�EF��etcc=@�2=�vFbeB=@�. At
the limit of zero electric field ("! 0), jz=Ez�! �zz�
shows several single-peak structures labeled by the index
p corresponding to the conventional Lebed resonances.
Under finite electric fields, each single peak splits to
double peaks of which the width increases with the applied
electric field.

Figure 2(b) shows the density plot of jz=Ez as a function
of magnetic field orientations. Darkness indicates the value
1-2
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FIG. 3. Angular dependence of interlayer current for several
voltages when the magnetic field is rotated in a plane normal to
conducting layers in �-�BEDT-TTF�2KHg�SCN�4. Inset: the
observed Lebed resonance positions and the 1D axis direction
of the electronic system.
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of jz=Ez. Here, the magnetic field strength B is assumed to
be constant, and the electric field is chosen as " � 0:03.
The abscissa Bx=Bz� tan�cos’ is normalized by
�2tbc=@vF�

�1 so as to be the operand of the Bessel function
in Eq. (4). On the other hand, the ordinate By=Bz �
tan� sin’ is normalized by b=c so as to give the Lebed
resonance at interger values at zero electric field as indi-
cated by dashed horizontal lines. Under the electric field,
each Lebed resonance splits into two branches obeying (3),
which appear as a pair of dark hyperbola in the figure. The
amplitude of each branch, that is, the darkness of each
hyperbola, is modulated as Bx=Bz is changed..

The tilted white line indicates the trace of magnetic field
rotation with fixed B and ’, which corresponds to the ex-
perimental scan as simulated in Fig. 2(a). When a Lebed
resonance splits into double peaks at �	 and �� in the field
rotation, the difference � tan� � j tan�	 � tan��j satis-
fies the following relation,

� tan� �
2V

dvFB sin’

��������������������
1	 tan2�

p
: (5)

Here, d and V � Ezd are the sample thickness and the
applied voltage along stacking direction, respectively. In
the right-hand side, tan� means the center position of
double peaks �tan�	 	 tan���=2. Since B, V, d, and ’
can be measured, we can experimentally determine the
Fermi velocity vF from the split of the Lebed resonance.

Another experimental method to determine the Fermi
velocity vF in Q1D conductors uses the POR in microwave
absorption measurement [11]. The present method using
just dc transport gives the same information as POR since
Eq. (4) is obtained by substituting the Bloch frequency !B
for the microwave frequency ! in Eq. (2).

In order to demonstrate the above electric field effect in
real systems, we have performed angular magnetotransport
measurements of layered organic conductors under pulsed
high electric fields. First, we chose one of the most typical
Q1D organic conductors �TMTSF�2ClO4, where all of
magnetoresistance angular effects in Q1D systems have
been well established. Although we observed unclear
shift of Lebed resonances, we could not see clear split-
ting [12]. In the case of �TMTSF�2ClO4, interlayer resis-
tivity is too small to apply high electric fields. Too much
current easily heats up electron temperature and blurs out
the splitting. Then, we selected the organic conductor �-
�BEDT-TTF�2KHg�SCN�4, where BEDT-TTF denotes bis-
ethylenedithia-tetrathiafulvalene. This layered compound
has thick polymeric insulating layers so that it shows large
interlayer resistivity compared to �TMTSF�2ClO4.

It has been known that �-�BEDT-TTF�2KHg�SCN�4
undergoes a phase transition to the charge-density-wave
(CDW) phase at about 10 K [13]. Clear observation of
Lebed resonances [14,15] and POR (or FTR) [10,11] in this
CDW phase strongly suggests that sheetlike Fermi surfaces
exist in the electronic structure reconstructed by CDW
formation [16,17]. The Lebed resonances appear at mag-
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netic field orientations satisfying tan� � �1:27p� 0:55�=
cos����0�, where � and � are the polar angle from the
crystal b� axis (normal to the conducting ac plane) and the
azimuthal angle around the b� axis measured from the a
axis, respectively [15]. p is an integer, and �0 � 27�. This
fact shows that the 1D axis normal to the Fermi sheets is
tilted by �0 � �=2 � �63� from the a axis in the ac
plane in the CDW phase.

Single crystals of �-�BEDT-TTF�2KHg�SCN�4 have
been grown by the conventional electrochemical method.
The interlayer conduction under strong electric fields was
measured using pulsed electric fields to avoid sample
heating. Electric contacts were formed by gold evaporation
on the top and bottom flat surfaces. Typical crystal thick-
ness is d � 0:1–0:2 mm. Pulsed voltage V was applied
between the top and bottom surfaces, and the responding
interlayer current was measured. The waveforms of both
voltage and current pulses were recorded in the 12-bit
digitizer. The pulse width of 5 �s and the duty ratio of
1=3000 were chosen so as to avoid sample heating.
Although the measured voltage-current characteristics
were nonlinear, they showed no clear threshold behavior
for the sliding motion of CDW. The samples were mounted
on the rotating holder with 0.1� resolution, set in the 13 T
superconducting magnet.

Figure 3 shows the interlayer current as a function of
magnetic field orientations for several interlayer voltages.
The magnetic field strength was fixed at 13 T, and the
temperature was held at 1.8 K so that the system was in
the CDW phase. When the interlayer voltage is low
enough, for example, V � 2 V, the interlayer current
shows a series of peaks due to the Lebed resonance as
1-3
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indicated by arrows. As shown in the inset of Fig. 3, their
positions satisfy the resonance condition tan� � �1:27p�
0:55�= cos����0� represented by tilted dashed lines, if
we assume that magnetic fields were rotated in a plane
normal to the ac plane with the fixed azimuthal angle � �
�9� measured from the a axis. In other words, the rotation
plane was tilted by ’ � 54� from the 1D axis.

At large interlayer electric fields, the Lebed resonance
peaks clearly split into double peaks, and their split width
increases as the applied electric field is increased. The split
width becomes smaller at Lebed resonances with higher
indices p. Experimental results in Fig. 3 qualitatively
reproduce those of Fig. 2(a) calculated for an ideal Q1D
system (1).

In Fig. 4, the split width is plotted as a function of the
voltage for several Lebed resonances. The abscissa is
normalized by the normal component of magnetic field
Bz � B�1	 tan2���1=2. Here, the split width and the cen-
ter position are determined by � tan� � j tan�	 � tan��j
and tan� � �tan�	 	 tan���=2, where �	 and �� are
positions of split double peaks. We can see that the split
width � tan� for different Lebed resonances with different
indices p almost exist along a common straight line pass-
ing through the origin. This means that the split width is
proportional to the electric field Ez and scaled by the
normal component of the magnetic field as expected in
Eq. (5). Therefore, we could conclude that the observed
split originates from the electric field effect discussed
above. From the slope of the line in Fig. 4, which is equal
to 2=dvF sin’, we can estimate the Fermi velocity vF as
�9:0� 1:5� � 104 m=s using d � 0:1 mm and ’ � 54�. It
is agreeable with the value 6:5� 104 m=s obtained from
the POR measurements [11].

In summary, we have discussed the Lebed resonance of
interlayer conduction in Q1D layered conductors under
strong electric fields. Under strong electric fields, two
Fermi sheets show the Lebed resonances at different field
orientations, of which the difference can be used to esti-
12660
mate the Fermi velocity. We have experimentally demon-
strated the above features with the low-dimensional
organic conductor �-�BEDT-TTF�2KHg�SCN�4.
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