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Inverse Anderson Transition Caused by Flatbands
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We propose a new disorder-induced insulator-metal transition of one-electron states, which may be
called the ‘‘inverse Anderson transition.’’ We first make a highly degenerated localized states by
constructing a three-dimensional periodic system possessing only flat dispersion relations. When we
introduce a disorder into it, a finite-size scaling of the level statistics shows two clear (localization-
delocalization and delocalization-localization) transitions for a wide range of the energy, with increasing
the degree of disorder. These transitions are confirmed also by finding the system-size-independent f���
characteristic of the wave function.

DOI: 10.1103/PhysRevLett.96.126401 PACS numbers: 71.23.An, 71.30.+h, 72.15.Rn
FIG. 1 (color online). Diamond lattice with fourfold-
degenerated orbitals on each site. We consider the transfer
integrals between orbitals within the nearest-neighbor sites.
The two atoms A and B and eight orbits form a unit cell.
It is well known that the Anderson transition is a
disorder-induced metal-insulator transition of one-electron
states [1]. Any periodic system has been believed to be
conductive when the Fermi energy is inside of an energy
band. When we introduce a disorder into it and the degree
of disorder, W, comes to a critical value, the Anderson
transition takes place [2–4].

In one dimension it has been proved that the critical
value, Wc, vanishes [5–13]. In two dimensions, it has been
believed to vanish, while in three dimension, it is positive
[14]. The mobility edge in E-W space was calculated
theoretically [15] and numerically [15–19]. Level statistics
is one of the powerful tools to describe the transition [20].
The f��� characteristic of wave functions, originally pro-
posed by Hentschel and Procaccia [21], is another tool for
describing the mobility edge [19].

However, it is not always true that Bloch waves are
conductive. When we find a localized eigenstate in any
periodic system, then the shifts of it at equivalent positions
are obviously the eigenstates with the same eigenenergy.
When the number of the independent eigenstates is equal to
that of the unit cell of the crystal, we have a complete set of
wave functions to construct a branch of Bloch states form-
ing a flatband (FB). The vanishing of the group velocity of
the wave packet and of the off-diagonal elements of the
Green’s function cause no conduction.

The FB has been studied by Mielke and Tasaki in study-
ing ferromagnetism [22–26]. Recently Nishino, Goda,
and Kusakabe proposed a new method of constructing
FB by considering a localized eigenstate in any periodic
system [27]. The condition of finding a FB usually leads us
to a subspace of the parameter space describing the
Hamiltonian. When we have a common subspace of all
of them, we can find a perfect FB system in which all of the
dispersion relations become flat. We cannot say the highly
degenerated states of the FB are localized nor extended
from a rigorous point of view. If an infinitesimally small
periodic perturbation is introduced into the system with a
FB to break the degeneracy, Bloch states with an infinite
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effective mass and an infinitesimally small bandwidth
appear. However, when we introduce an infinitesimally
small random perturbation into it, localized states appear
by the breaking of the symmetry. We can prove in one
dimension and numerically observe in two and three di-
mensions that the decay rate of the wave function
(Lyapunov exponent) of an impurity state does not vanish
for the infinitesimally small local perturbation.

In this Letter, we investigate some disorder-induced
transitions of one-electron states in three dimension in
the system with only FB’s. As a typical example, we
prepare a diamond lattice with fourfold-degenerated orbi-
tals on each sites and with only FB’s as is shown in Figs. 1
and 2 [28]. Then we introduce a disorder into it. If the weak
disorder destroys the phase coherence of the localized
eigenstates in a flatband, the localized states may melt
into extended states by the disorder.

We describe the disordered system by the following
tightly binding Hamiltonian
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FIG. 3 (color online). Nearest-neighbor level-spacing distribu-
tion function P�s� for different degrees of disorder; W � 12,
W � 26, and W � 50, at E � 0 for the case of N � 7. Wigner
(solid line) and Poisson (dotted line) functions are also shown for
comparison.

FIG. 2. Dispersion relations of the flatband model. The matrix
elements of the Hamiltonian are selected as tA1;A2 � 0:0,
tA1;B1 � �1:0, tA1;B2 � 1:0, tA2;B4 � �1:0, tA2;B3 � �1:0, as in
Ref. [28], so that the entire dispersion relations become flat and
fourfold degenerated. Cf. the indices of orbitals in Fig. 1.
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FIG. 4 (color online). The parameter � as a function of W at
E � 0 for different system sizes. We can find two intersecting
points at which the system-size-invariant P�s� appears.
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where cyi and ci are the electron creation and annihilation
operators of an orbital �i, "i is the random on-site energy
of �i, and ti;j is the off-diagonal matrix element between
�i and �j. The values of the off-diagonal matrix elements
fti;jg have been selected as Fig. 21 of Ref. [28] so that this
system has only FB’s in the regular system with "i � 0 as
is shown in Fig. 2. Then we introduce a disorder into all "’s
so that the value of each mutually independent random
variable "i is uniformly distributed over the range from
�W=2 to W=2.

We firstly study the transition of the wave functions by
the finite-size scaling of the level statistics by Shklovskii
et al. [20]. The eigenvalues and eigenfunctions are calcu-
lated by QR algorithm with the accuracy of double preci-
sion. For extended states, the probability density P�s� of
the normalized nearest-neighbor level spacing s is close to
the Wigner surmise PW�s�, while for localized states, it is
close to the Poisson distribution PP�s�. They calculated
numerically a parameter ��W;N� to measure a distance of
the distribution P from PW toward PP, defined as

��W;N� �
A� AW
AP � AW

; A �
Z 1

2
P�s�ds;

where AP and AW have been made, respectively, by PP and
PW . The deviation ��W;N� from Wigner surmise (� � 0)
toward Poisson distribution (� � 1) usually increases with
increasing W for all N’s, and they intersect at a particular
point of W. This point gives a transition point Wc.

We exemplify in Fig. 3 P�s� of the disordered FB model
of size N3 for three different values of W, at E � 0 for the
case of N � 7, where N is the number of the primitive unit
cells in one direction. A unit cell contains two atoms and
eight orbits. Cyclic boundary condition is adopted to obtain
the eigenvalues and eigenfunctions. We consider an ex-
tremely narrow window of energy containing about a few
% of the total energy levels around E � 0 so that 105 levels
are used to define the density, and take sample average of P
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to get P�s�. Looking at the tails of the distributions, we can
see that the function P�s� corresponds to the Poisson
function for small W, to the Wigner function for medium
W and again to the Poisson function for large W.

To compare the P�s�’s for different system size,
we evaluate ��W;N� for N � 5; 6; 7; 8 and for W � 12�
50. The results are shown in Fig. 4. Surprisingly, the
deviation ��W;N� is not a monotonously increasing func-
tion with increasing W. It once drops off rapidly to a very
small value and then recovers gradually with increasingW.
Further, the curves intersect at W � Wc1 � 13:5 and W �
Wc2 � 37:0, which we identify as the transition points. The
transition at Wc2 is understood as the well-known
Anderson transition. On the other hand, the transition at
Wc1 is caused by the change from localized states to
extended states with increasing W. It is an unknown
and new transition. We calculated ��W;N� in a two-
dimensional flatband model, and obtained again concave
functions with respect to W, but these functions did not
1-2
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FIG. 5 (color online). The mobility-edge trajectory of the
flatband model derived by the system-size-independent level
statistics. There are two transition points over the entire range
of energy. The mesh is the energy area in which we cannot
estimate two transition points accurately. The marks � show the
points on which the system-size-independent f��� character-
istics are confirmed.

 0

 0.5

1

 1.5

2

 2.5

3

 0  1  2  3  4  5  6

W=14.0 N=6
W=14.0 N=8
W=14.0 N=10
W=37.0 N=6
W=37.0 N=8
W=37.0 N=10

FIG. 6 (color online). The f��� characteristics of the wave
functions for W � 14:0 and W � 37:0 at E � 0. Error bars are
made by using 100 samples and are indicated on f and � for
q � �5;�2;�1; 0; 1; 2; 5 for the case N � 6; 8; 10.
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intersect at any particular point. That is, we could not find
disorder-induced localization-delocalization-localization
transition in two dimension.

We calculated ��W;N� for the entire energy region to
determine the mobility-edge trajectory which is shown in
Fig. 5 only for positive energy. It is symmetrical around the
origin of the energy axis. The solid line represents the band
edge determined numerically and the dashed line does
Lifshitz band edge. We cannot estimate the mobility-
edge trajectory for 9< jEj< 11 accurately because two
transition points come nearer to each other. We also avoid
to describe it for jE	 4j & 0:04 (W < 0:01) to keep the
numerical accuracy safely enough for the quasidegener-
ated eigenvalues.

We secondly verify the two transitions by investigating
the system-size dependence of the f��� characteristic of
the electronic wave functions [29]. The function f���
describes the fractal dimension of the subset of space on
which the strength of singularity of the probability mea-
sures �k�L� �

PL3

nk�1 j �nk; E�j
2 (k � 1; 2; . . . ; N3=L3) of

the wave function  �n; E� takes a value of �, where L and
N are the linear sizes of a box and the total system,
respectively, and �k�L� � l� for a small decreasing pa-
rameter l � L=N.

To obtain f��� numerically, by the standard box
counting method [21,29,30], we define �k�q; L� �
�q
k�L�=

P
k0�

q
k0 �L� and calculate the strength of singularity

��q� � lim
l!0

X
k

�k�q; L� ln�k�1; L�= lnl;

as well as the corresponding fractal dimension

f�q� � lim
l!0

X
k

�k�q; L� ln�k�q; L�= lnl;
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for various values of q on the range 
�5; 5�. The symbol
liml!0

P
describes the asymptotic behavior of

P
for de-

creasing L down to 1 for a fixed N.
It is well known that the f��� characteristic at the

transition points is system-size independent [31]. The
f��� characteristics of the FB model for the particular
values ofW,W � 14:0, and W � 37:0 at E � 0 are shown
in Fig. 6. We can see that the f��� characteristics for the
two particular values of disorder are size independent. Of
course, f��� characteristics for W < 14:0 and for W >
37:0 both exhibit localization behavior, while for 14:0<
W < 37:0 does delocalization one. And hence, the two
values of W show us two transition points. The new f���
characteristic for the localization-delocalization transition
at Wc1 seems slightly different from that of the ordinary
Anderson transition at Wc2. However, the error bars are too
big for insisting the difference.

Some studies on Anderson transition in a three-
dimensional simple cubic lattice reported an existence of
two transition points near the band edge [17,19]. But the
level statistics in the present study have not been able to
find the two transition points in it [32]. The level statistics
need an amount of level density even near the band edge.
But the localized states near the Lifshitz band have a very
low density of states and they are usually on or outside of
the numerically estimated band edge for systems with a
tractable size. The level statistics for systems with a nu-
merically tractable size can find only the well-known
Anderson transition in the ordinary disordered systems.

To summarize, we have shown a new disorder-induced
localization-delocalization transition starting from a per-
fect FB system by a finite-size scaling of level statistics and
f��� characteristic. The localization for W <Wc1 is not
due to the strength of disorder but to the characteristic of
localization in FB which persists under a weak random
perturbation. Therefore, the localized states for W <Wc1

are expected to be of new type and the insulator-metal
1-3



PRL 96, 126401 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
31 MARCH 2006
transition at W � Wc1 is also expected to be of new one.
Further studies will be made on these issues.
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