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Properties of Steady States in Turbulent Axisymmetric Flows
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We experimentally study the properties of mean and most probable velocity fields in a turbulent
von Kármán flow. These fields are found to be described by two families of functions, as predicted by a
recent statistical mechanics study of 3D axisymmetric flows. We show that these functions depend on the
viscosity and on the forcing. Furthermore, when the Reynolds number is increased, we exhibit a tendency
for Beltramization of the flow, i.e., a velocity-vorticity alignment. This result provides a first experimental
evidence of nonlinearity depletion in nonhomogeneous nonisotropic turbulent flow.
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Introduction.—A yet unanswered question in statistical
physics is whether stationary out-of-equilibrium systems
share any resemblance with classical equilibrium systems.
A good paradigm to explore this question is offered by
turbulent flows. Incompressible flows subject to statisti-
cally stationary forcing generally reach a steady state, in a
statistical sense, independent of the initial conditions. Most
of the current turbulence modeling is devoted to the under-
standing of this state, and the role of the velocity fluctua-
tions or velocity smallest scales in its construction. A
distinguished feature of stationary large Reynolds number
turbulent flows is the presence of coherent structures, under
the shape of vortices in 2D [1,2], or vorticity thin tubes in
3D [3]. These structures correspond to regions where
vorticity is locally almost aligned with velocity—phe-
nomenon referred to as Beltramization [4,5]. This tendency
to velocity-vorticity alignment induces depletion of non-
linearities in Navier-Stokes equations. Interestingly
enough, similar depletion of nonlinearity is also observed
in the inviscid counterpart of the Navier-Stokes equation—
the so-called Euler equation—resulting in a slowing down
of the vorticity blowup with respect to rigorous estimates
[6]. A theoretical question of interest is therefore whether
turbulent flows have a natural tendency for nonlinearity
depletion, and whether this is a characteristic of the steady
states.

The answer to the first issue is ambiguous. On one hand,
a tendency for Beltramization has indeed been observed in
some numerical simulations of stationary, nearly isotropic
turbulence [7,8]. On the other hand, similar studies per-
formed on more general flows—such as boundary layer
[9]—provided little evidence of such a property. A similar
conclusion has been reached using experimental data [10],
with slightly less reliability owing to the difficulty to
measure vorticity. As for the second issue, it has only
been partially explored in special geometries. In 2D, equi-
librium states of the Euler equations have been classified
through statistical mechanics principle by Robert and his
collaborators [11,12]. They indeed correspond to Beltrami
solution. In 3D axisymmetric flows—an intermediate situ-
ation between 2D and 3D—a similar task has been under-
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taken by Leprovost et al. [13]. In the ideal case—force
free, inviscid—they proved the existence of an infinite
number of conserved quantities, in addition to the energy
and the helicity. They also showed the existence of an
infinite number of equilibrium states, depending on the
conserved quantities. Among them, a Beltrami state is
obtained, when only the energy and the helicity are con-
served. They postulated that even in the presence of small
but finite viscosity and forcing [14], this feature remains
valid, with selection of steady states through boundary
conditions and forcing.

The purpose of this Letter is to perform an experimental
check of these findings. We find that mean and most
probable velocity fields of axisymmetric flows can indeed
be characterized by two families of functions, as predicted
in Ref. [13]. These functions depend on the viscosity and
forcing. As the Reynolds number is increased, they evolve
toward the functions corresponding to a Beltrami state,
providing a first evidence of nonlinearity depletion in a
nonhomogeneous, nonisotropic system.

Theoretical background and definitions.—Consider an
incompressible axisymmetric flow, with velocity compo-
nents in a cylindrical referential (vr, v�, vz). Because of
incompressibility and axisymmetry, only two functions are
sufficient to describe the flow, namely, the angular momen-
tum—��r; z� � rv�—and either the stream function
��r; z�, such that �vr; vz� � �r��e�, or the azimuthal
vorticity !��r; z�. Using a variational method, Leprovost
et al. showed that the steady states solution of axisymmet-
ric Euler equations, in the force-free case obey

� � F���; ��
FF0

r2 � G���; with � � !�=r;

(1)

where F and G are arbitrary functions linked with conser-
vation laws of the system—Casimirs of �, generalized
helicity [13]. For example, the steady state corresponding
to conservation of energy and helicity is such that F is
linear and G � 0, resulting in a linear relation between
vorticity and velocity ( ~v � � ~!). This is a Beltrami flow,
given by
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FIG. 1 (color online). Velocity profile for Re � 2:5� 105,
direction (�): colored contour for azimuthal component, arrow
representation for poloidal part. Top: FMPV. Bottom: time-
averaged flow. Right part displays a sketch of the two toric
recirculating cells.
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where � and m are free parameters and J0 and J1 are first
order Bessel functions.

Considering further the thermodynamics of the system,
Leprovost et al. proved that the equilibrium states at some
fixed coarse-grained scale are such that the most probable
velocity flow (MPVF) is a stationary state of the Euler
equation, i.e., satisfies Eq. (1). Finally, they postulated that
these force-free, inviscid results can be extended to the
stationary states in the presence of both viscosity and
forcing, providing the function F and G are selected
through boundary conditions and forcing.

Experimental setup.—In order to check the theoretical
predictions, we have worked with a simple ‘‘axisymmet-
ric’’ configuration: the von Kármán flow generated by two
counter-rotating impellers in a cylindrical vessel. The cyl-
inder radius and height are, respectively, R � 100 mm and
H � 180 mm (distance between inner faces of impellers).
The impellers consist of 185 mm diameter disks fitted with
sixteen 20 mm high curved blades. More details about the
experimental setup can be found in Ref. [15]. The impel-
lers’ rotation frequencies are both set equal to f to get exact
counter-rotating regime. We define two forcing associated
with the concave [convex] face of the blades going for-
ward, denoted in the sequel by direction ��� ��	. The
working fluid is either water or glycerol at different dilu-
tion rates. The resulting accessible Reynolds numbers
(Re � 2�fR2��1 with � the kinematic viscosity) vary
from 102 to 3� 105. In the exact counter-rotating regime,
whatever the impellers, the flow is divided into two toric
cells separated by an azimuthal shear layer. This setup is
invariant under rotations of � (R�) around any radial axis
passing through the center of the cylinder. The time-
averaged velocity fields we consider hereafter are R�
invariant and axisymmetric [15]. Velocity measurements
are done with a DANTEC laser doppler velocimetry (LDV)
system.

Data processing.—The LDV data only provide the axial
and azimuthal velocity components on a 170 point grid
covering half a meridian plane, through time series of
about 200 000 randomly sampled values at each grid point.
From this time series, it is straightforward to get time-
averaged axial and azimuthal velocities. The remaining
radial component of the mean velocity field can then be
obtained using the incompressibility and axisymmetry: this
procedure has been later validated through direct measure-
ments of the radial velocity with a particles image veloc-
imetry system on the same flow. We also use the time series
to extract at each point histograms of the axial and azimu-
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thal velocity, and compute the flow of most probable
velocities (FMPV) [16], obtained by taking, at each point,
the most probable value of the velocity. The vr component
is once more derived from the two other components using
continuity equation. Figure 1 compares the two flows
computed from the same data set: they have the same
overall structure, but differ through the size of the middle
shear layer, which is thinner in the case of the FMPV. This
is due to the fact that the chaotic wandering of the shear
layer around its average position is significantly less prob-
able as one considers positions further away from the
equatorial plane. From a theoretical point of view, the
two flows differ in the sense that the mean velocity is not
a solution of the Navier-Stokes or Euler equations—be-
cause of the fluctuations, which induce a Reynolds stress,
especially in the shear layer—while the MPVF is a sta-
tionary solution of the Euler equations. Therefore, one can
expect theoretical predictions regarding the structure of the
stationary state to be less accurate in the case of the mean
flow, as the Reynolds number and the fluctuations increase.

We first compute the F function by looking at � as a
function of �, and then we use this estimate to evaluate G,
by looking at �2 � �� FF0

r2 as a function of �. This
procedure is likely to induce a lot of noise in the estimate
of G. To check its robustness, we have tested it on a
Beltrami flow [Eq. (2)] with a superimposed level of noise
comparable to the level of fluctuations in the flow (see
Fig. 2). Even in the presence of noise the fits give the
correct shapes: F � �� and G � 0.
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FIG. 4. F fit. (a) and (b) FMPV direction (�) and (�),
respectively; (c) and (d) time-averaged field direction (�) and
(�), respectively. Legend for all figures: Re � 100 (thin dotted
line), Re � 150 (thin dot-dashed line), Re � 2100 (thin dashed
line), Re � 9100 (thin solid line), Re � 2:5� 105 (thick solid
line). The thin dotted straight line is a Beltrami. As F is odd, we
display it for positive values of � only. Note that the fit at Re �
9100 for FMPV case in direction (�) could not be obtained from
the data due to large scattering.
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FIG. 2. � and �2 � �� FF0

r2 versus � for the Beltrami flow
defined by Eq. (2) with a superimposed white noise of amplitude
60%. We have represented the F and G fits on, respectively, the
left and right figures.
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After this test, we apply this procedure on the real data,
with a further correction, motivated by the following re-
mark. Figure 3 displays two typical plots of F: one over the
whole apparatus, and one over a 50% portion of the flow
obtained after removing regions close to the impellers and
along the vessel. These parts correspond to locations where
the viscosity and the forcing (neglected in Ref. [13]) are
principally at work, and larger deviations from theoretical
predictions can be expected. One sees that while data on
the whole vessel display significant scatter, preventing the
outcome of a well-defined F, the restricted data gather onto
a cubic-shaped function fitted by a two parameters cubic:
F��� � p1�� p3�3. This fit is then used to obtain G. In
the sequel, we obtain F and G through fits over this 50%
portion of the flow away from the boundaries.

Results.—We present results computed for both time-
averaged flow and FMPV for the two directions of rotation,
at different Reynolds numbers. Figure 4 presents the F fits
obtained in each case. We have included on each graph a
straight line tangent to experimental curves for � � 0 as a
reference to a Beltrami flow. The experimental data are
much more scattered in the FMPV case, debasing the fit
accuracy compared to the mean flow—R2 ’ 0:94 instead
of 0.99.

In Fig. 5 we present the G fits obtained in the same
conditions. The best fit of the FMPV G functions is linear,
whereas cubic-shaped functions are required for time-
averaged G. The plots of G consist of wide noisy bands
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FIG. 3. � vs � for experimental time-averaged flow in direc-
tion (�) at Re � 2100. Left: for the whole flow. Right: for r 

0:81, �0:56 
 z 
 0:56, corresponding to 50% of the flow
volume. The remaining points are clearly gathering along a
cubic-shaped function F.
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surrounding the fits in both cases. The noise for G is larger
than for F, since it is a result of a two-step procedure
including a spatial derivation.

Considering the variation with Reynolds number of F,
both the FMPV case and the time-averaged case behave
similarly. As Reynolds number increases, the F cubic
curves collapse on the Beltrami line.

At Re � 2:5� 105, it is not even possible to distinguish
the F fit from a straight line and this for the two directions
of rotation. In the case of G, there is a difference between
the two cases. For the FMPV, the best fit is linear, with a
slope smaller than the noise level; this is consistent with
G � 0. For the time-averaged case, the shape of G is very
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FIG. 5. G fit. (a) and (b) FMPV direction (�) and (�),
respectively; (c) and (d) time-averaged field direction (�) and
(�), respectively. Same legend as Fig. 4.
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different. All the fits present a plateau around zero. The
greater the Reynolds number, the wider this plateau, so the
wider the range of �—or equivalently the volume of
considered flow—where G is very close to zero, i.e.,
very close to the Beltrami G function.

The difference in the shape of G can be explained as
follows: according to Eq. (1),G��� is the difference of two
terms. One linked to F is necessarily a cubic, while the
second, connected to the azimuthal vorticity is almost a
noise in this area of the flow. In the FMPV case, the
magnitude of the cubic term is small compared to the
vorticity, and we only see the noise coming from the
vorticity. In the time-averaged case, the cubic is much
larger, so that it determines the behavior of G.

A second observation is the dependence of F and G on
the forcing. Comparison of Figs. 4(a) and 4(c) with 4(b)
and 4(d) obtained for two different forcing, shows that the
slope of F slightly depends on the forcing [p1 � 5 for
(�) direction; p1 � 4 for (�) direction]. For any forcing,
G remains close to zero at the measurement scale. To check
this dependence further, we have conducted an additional
experiment at high Reynolds number, with much smaller
impellers. As shown in Fig. 6, we obtained a different
shape for F, with a different inflection.

Discussion and perspectives.—An inviscid force-free
theory developed by Leprovost et al. predicted a charac-
terization of the steady state in axisymmetric turbulent
flows through two functions F and G. In our experiments,
we have confirmed this, and measured these functions for
different forcing, and different viscosities, using two dif-
ferent fields as diagnostic: the FMPVas predicted and more
surprisingly the time-averaged field, even in a region where
Reynolds stresses are not negligible. This could be due to
the quasi-Gaussian distributions of velocities.

First, we have observed that the functions are well-
defined only in the portion of the flow remote from the
boundaries, where forcing and dissipation take place. The
steady states of the von Kármán flow can be described by
these two functions, as predicted by a statistical analysis of
equivalent equilibrium states assuming zero viscosity and
no forcing [13]. Nevertheless, we have seen that forcing
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and dissipation do influence the steady state regime
through the selection of the characteristic functions.
Specifically, we have observed that the forcing selects the
specific shape of the functions (linear, cubic, . . .), while
dissipation acts as a sort of self-similar zoom and select the
portion of the curve actually explored by the flow. This
suggests that stationary out-of-equilibrium systems like
turbulent flows are universal in a weaker sense than in
ordinary equilibrium systems: they can be described in a
universal manner through general functions (like F and G)
determining the ‘‘equation of state.’’ However, these func-
tions are nonuniversal since they depend on the fine details
of the system (dissipation and forcing).

Finally, we have shown that the evolution for increasing
Reynolds number is towards a Beltrami state, with deple-
tion of nonlinearities. This evolution is more obvious when
considering the FMPV, as expected from the thermody-
namics analysis developed by Leprovost et al.. To our
knowledge, this is the first experimental evidence of non-
linearity depletion in a nonhomogeneous, nonisotropic
turbulence, where it is very challenging to measure simul-
taneously all components of velocity and vorticity. Our use
of the functions characterizing the steady states enables us
to lower the experimental constraints for such a check.
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