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Singular Jets and Bubbles in Drop Impact

Denis Bartolo,"* Christophe Josserand,>" and Daniel Bonn

1.3.%

Laboratoire de Physique Statistique de I'ENS, 24 Rue Lhomond, 75231 Paris Cédex 05, France
2Laboratoire de Modélisation en Mécanique, CNRS-UMR 7606, Case 162, 4 place Jussieu, 75252 Paris Cédex 05, France
3van der Waals-Zeeman Institute, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands
(Received 21 November 2005; published 27 March 2006)

We show that when water droplets gently impact on a hydrophobic surface, the droplet shoots out a
violent jet, the velocity of which can be up to 40 times the drop impact speed. As a function of the impact
velocity, two different hydrodynamic singularities are found that correspond to the collapse of the air
cavity formed by the deformation of the drop at impact. It is the collapse that subsequently leads to the jet
formation. We show that the divergence of the jet velocity can be understood using simple scaling
arguments. In addition, we find that very large air bubbles can remain trapped in the drops. The surprising
occurrence of the bubbles for low-speed impact is connected with the nature of the singularities, and can
have important consequences for drop deposition, e.g., in ink-jet printing.
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Droplets impacting on solid surfaces have fascinated
scientists and even artists ever since the first pictures
became available [1]. From a practical point of view, the
control of the impact dynamics is of prime importance:
droplet deposition is a key factor in many industrial pro-
cesses. Pertinent examples are ink-jet printing [2], sputter-
ing, spray painting [3], deposition of pesticides on plant
leaves [4], etc. For most, if not all, of the applications, one
wants to efficiently deposit a droplet, without spilling over
any of the droplet material and without trapping air
bubbles.

From a fundamental point of view, the last ten years have
witnessed an enormous progress in the understanding of
free-surface flows. In particular, the description of the sur-
face singularities that are ubiquitous in these problems has
greatly advanced [5]. Experimental and numerical studies
have taken advantage of the recent progress in high-speed
imaging techniques and computational power, respec-
tively, to determine the self-similar behavior close to the
singularities. Examples of much recent interest are drop
formation [6—8], surface driven flows [9], and bubble col-
lapse [10]. However, complete understanding of the drop
impact problem remains nontrivial due to a complicated
multiscale interplay between capillarity, viscous forces,
inertia, and the properties of the solid surface [3,11].

In this Letter, we find that a surprising outcome of this
interplay is that an ultrafine, high-speed jet can emerge
from the drop, sending out part of the drop material else-
where. In addition, for a certain range of impact velocities,
the jet formation is accompanied by entrapment of air
bubbles. Both the jet formation and the bubble entrapment
are understood as a consequence of the formation of an air
cavity that subsequently closes up in a singular (self-
similar) fashion. We find that the cavity can close in two
different ways, and, consequently, identify two distinct col-
lapse singularities. A detailed analysis and theoretical in-
terpretation of the singularities allow an understanding of
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the main features of these high-speed and ultrathin emitted
jets.

We study the impact of water droplets on a hydrophobic
surface. The water drops (of density p = 1000 kgm™3,
surface tension y = 72 mN/m) are made using a precision
needle which allows for a controlled release of spherical
drop of radius R; = 1 mm. The impact velocity Viypa Of
the droplets is varied simply by increasing the fall height.
We use a superhydrophobic solid surface with a contact
angle for water of § ~ 160° [12]. The results described
below are robust against viscosity changes (at least up to
10 times the water viscosity using water-glycerol mix-
tures), small variations of the drop radius or hydrophobic-
ity: we obtain in fact very similar results for less hydro-
phobic, but still nonwetting surfaces (Parafilm and PDMS
elastomer). However, due to contact line pinning on the
solid, there is more scatter in the data; we will therefore
restrict our discussion here to the superhydrophobic sur-
faces. Since the impact and subsequent jet formation are
extremely rapid, we follow the drop impact using an ultra-
high speed video system (Phantom V7), and use frame
rates of 60000 and 100000 fps. Figure 1 depicts three
series of snapshots of drops impacting at three different
velocities (0.45, 0.56, and 0.68 m - s~ 1). For all the cases
studied here, the general dynamics of the impact consists in
the spreading of the drop deformed by capillary waves
followed by a retraction phase leading to the formation
of a jet and finally to the total rebound of the droplet.

Since we use a low-viscosity liquid, viscous effects
can be neglected in our experiments; the drop dynamics
is therefore dictated by the Weber number We, which
compares the inertial to the capillary forces, We=
pRIVizmpaCt /7. In the experiments We ranges between 0.6

and 16: this corresponds to small deformations on the scale
of the droplets, as is indeed observed in the experiment.
The jets, on the contrary, correspond to very large defor-
mations, but have a very small characteristic size, Fig. 1.
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FIG. 1. Rapid camera snapshots. Impact of water drops (radius
R; = 1 mm) on a superhydrophobic surface. (a) Formation of
the cylindrical air cavity: impact velocity Vigpay = 0.45 m - s~
Pictures taken 2.3, 2.7, and 3.4 ms after the impact time.
() Vimpaee = 0.45 m - s~!. Pictures taken 3.8, 4.0, and 4.3 ms
after the impact. (c) Impact velocity Vippae = 0.56 m/s.
Pictures taken 3.8, 4.2, and 4.4 ms after the impact. Note the
presence of a trapped air bubble. (c) Impact velocity Vippaee =
0.68 m - s~ !, Pictures taken 3.7, 4.2, and 4.9 ms after the impact.

As the drop hits the surface, capillary waves are excited,
propagate along the surface, and deform the drop into a
pyramidal shape. The oscillations of the capillary waves
then lead to the formation a cylindrical air cavity located at
the center of the drop along the vertical axis [Fig. 1(a)]. For
the lowest impact speed, Fig. 1(b), the cavity retains its
cylindrical shape all the way until its collapse. Conversely,
for intermediate impact speeds, the bottom-up symmetry is
broken almost immediately [see Fig. 1(c)]: the top of the
cavity retracts faster than the bottom. As the liquid surface
reconnects at the top, a bubble is entrapped. In Fig. 1(d),
for higher impact speeds, the bottom of the cavity detaches
itself from the solid surface prior to the cavity collapse,
which leaves no bubble behind. By additionally filming
some of the droplets from above, we determine whether
dewetting due to the cavity formation occurs. We observe
in fact rupture of the liquid film between the air cavity and
the solid surface for 0.37 < Vi < 0.55 m/s. The drop
then adopts a toroidal shape. In all cases, the collapse of the
air cavity is immediately followed by the violent ejection
of a thin jet. For a low-viscosity fluid, the only intrinsic
length scale in the problem is the wavelength of the cap-
illary waves excited by the impact (i.e., the characteristic
step size of the pyramidal drop). This length is on the order
of A ~ y/(pV2 ) [13], an order of magnitude larger than

1mpact
the radius of the smallest jets.

We therefore need to understand the anomalously small
size and large velocity of the jets. The velocity is deter-
mined by measuring the position of the top of the jet on
four successive images when the jet emerges from the
drop. We find that this velocity, Vi, can be 40 times larger
than the impact speed: Vi, = 18 m - s~ for Vimpact =
0.45 m - s~!. The variation of the jet speed, Viet» and of
the jet radius, Ry, are nonmonotonic and highly nontrivial,

as shown in Fig. 2. We identify three main regions, sepa-
rated by dotted lines and denoted I, II, and III.

Region I.—At small impact velocities, when increasing
the impact velocity, the jet radius decreases rapidly
whereas its velocity appears to diverge as the impact
velocity approaches Viy. In parallel, the jet radius, mea-
sured just after its formation, becomes very small.

Region II.—This region corresponds to very small val-
ues of the jet radius and high jet velocities, and a rather
complicated behavior of the jet velocity is observed as a
function of Viyp.e- The latter is due to a subtle interplay
between the rupture of the liquid film and entrapment of air
bubbles. When approaching Vji_j;;, we observe bubble en-
trapment as shown in Fig. 1(b) for Vi, = 0.55 m/s, as
indicated by the black arrow in Fig. 2. The entrapment is
clearly due to the closing of the drop top surface before the
air can escape from the cavity, neither from the top before
the cavity closes, nor through the bottom since the liquid
film does not open [14]. Our experiment thus suggests that
two conditions need to be fulfilled for entrapment: the
cavity closes at the top and the air is not evacuated from
the bottom.

Region 11I.— For “high” impact velocities a decrease in
radius and a diverging jet velocity are found upon decreas-
ing the impact velocity. As Vipp.e > Vy-p air bubbles are
not trapped in the liquid anymore.

The high-speed movies (and Fig. 1) clearly show that the
jet is formed due to the collapse of the air cavity. To
understand what fixes the jet’s length and velocity scale,
we thus need to consider the collapse dynamics in detail.
This allows us to show that the jet structure with its
anomalous length and velocity scales is fully determined
by the collapse dynamics of the cavity.

The jets ejected for Vippae close to Vi result from the
pinch-off singularity of an air cylinder immersed in a low
viscosity liquid. Investigating the collapse dynamics in
detail [between images 1 and 3 on Fig. 1(b)], we observe
that the air thread exhibits self-similar behavior char-
acteristic of a finite-time singularity, with a character-
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FIG. 2. The jet velocity normalized by the impact velocity is
shown as a function of Vjyp.. The inset shows the jet radius.
Three regions are identified separated by dotted lines at Vi_j; =
0.45 and Vj_p = 0.65 ms™!. Open symbols correspond to the
same experiments as in Figs. 1(a)—1(c). Inset: Jet radius normal-
ized by the initial drop radius plotted versus the impact speed.
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istic exponent for the vanishing of the cavity radius R =
A(t, — 005001 with A =0.02 +0.003 m-s /2, see
Fig. 3. This dynamics is found almost but not completely
up to the singularity point. Rather, very close to the singu-
larity the air cylinder suddenly breaks down at some cri-
tical radius R.. This loss of the cylindrical symmetry of
the cavity depends in fact on the initial velocity Vimpaci-
This is an incredibly rapid process: even when filming at
100 000 fps, the air cavity disappears in a single image.

Similar cylindrical pinch-off was described recently in
bubble pinch-off in different liquids [15] and for cavity
closure after impacts of steel balls on dilute granular
materials [16]. For the latter, the pinch-off is followed by
jet formation as is also the case here. For the former, a
similar and equally surprising deviation from the self-
similar behavior close to the singularity was reported.
The pinch-off dynamics for all three cases is given by the
Rayleigh-Plesset equation [6,17] for cylindrical free-
surface flows. With the assumption that the air viscosity
can be neglected it reads for an inviscid fluid:

PO =Py _ (kg + R2) 1n<5> o2
p r 2 PR

where P is the pressure, R(¢) is the radius of the cavity, and
ris a large-scale cutoff, on the order of the drop radius. For
low-viscosity fluids, the pinch-off dynamics is dominated
by inertia and the first term on the right-hand side. If indeed
all other terms can be neglected, this implies that the
prefactor of the logarithm is zero, leading immediately to
R(1) = A(t, — 1)'/? for the radius of the cylinder [18], in
excellent agreement with the experimental data. In addi-
tion to the correct scaling, the prefactor A can be estimated
using simple dimensional analysis: A = (yR;/p)"/*. This
leads to A~ 1.6X10"2m-s" "2, in good agreement
with the experimental value.

We can now use our understanding of the cavity dynam-
ics to account for the jet velocity. In Fig. 4 we show Vi, as a
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FIG. 3. Radius of the cylindrical cavity R plotted versus
|t — 1|. Triangles: drop impact speed Vippa =0.43 m-s™'.
Circles: Vippaee =0.46m-s™!. Squares: Vippaee = 0.52 m-s™ 1.

Lines: power law fits.

function of the radius of the air cavity at rupture R, and
similarly as a function of the jet radius Rj.. Clear power
law relations over more than one decade of Vi are ob-
served: Vie o (R./Ry)~"9*%2, where R, is the cavity ra-
dius just prior to the collapse, and Vie & (Rjer/Ry) ™ %9*02.

To understand these relations between the jet velocity
and radius on the one hand, and the critical cavity radius on
the other hand, we propose a simple semiquantitative
model based on mass and kinetic energy fluxes, neglecting
both viscous and capillary effects. At the onset of cavity
rupture, the pinch-off dynamics described above leads to a
velocity of collapse of the air cylinder equal to R(f) =
A/[2(t. — 1)'/2] = A2/(2R,). Recalling that the bulk ve-
locity field is steady for inertia dominated cylindrical
collapse, we can use a balance equation through the bound-
ary defined by the radius R, and the height of the deformed
drop, taken here to be on the order of the initial drop radius
R;. Then, mass conservation gives: [27R(t)h]R(t) =
2[7RZ]Vier, and h ~ Ry which leads to

Vo A% /R.\2 2
w7

The relation between the jet radius and the jet velocity can
be inferred using a second conservation law. The continuity
equation for the kinetic energy fluxes at the onset of the jet
shooting reads: 1 pR3()[27R(1)h] = 25pVi [ 7R, us-

jet

Vi =~ A (Re) ! 3)
R\ R )

Equations (2) and (3) correctly predict the scaling relations
between Vg, Rje, and R.: Vi % (R./Ry) ™% and Vg
(Rjei/R) ™", in good agreement with the experimental

data. These results are strongly substantiated by the com-
plete absence of free fitting parameters, since A is known

ing Eq. (2), we obtain
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FIG. 4. Open circles: Jet velocity plotted versus the jet radius
normalized by the initial drop radius, Rj/R;. Dashed line:
theoretical prediction obtained from Eq. (2). Filled circles: Jet
velocity plotted versus the cylindrical cavity radius before col-
lapse normalized by the initial drop radius R./R;. Full line:
theoretical prediction obtained from Eq. (3).
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FIG. 5. Self-similar structure of the jet. Impact velocity:
Vimpact = 0.687 m - s~ 1. Left: twelve superimposed jet profiles
for different times (time interval 15 us). First profile taken
0.17 ms after the collapse of the air bubble. Axes units: mm.
Right: the same curves have been rescaled by a factor of (¢t —
1.)%/? for the x and y coordinates, following the scaling behavior
expected for self-similar dynamics in a capillary-inertial regime
(arbitrary units for the rescaled profile plots).

from the void collapse dynamics. Figure 3 compares the
theoretical predictions with the experimental results; given
the simplicity of our model, the agreement with the ex-
perimental data is quite satisfactory not only for the scaling
exponents but also for the numerical prefactors.

The last observation that needs to be explained is then
the divergence of the jet velocity upon approaching Vi_yp.
Experimentally, the transition between regions Il and III
can also be identified by the topological change from a
simply connected topology to a multiply connected topol-
ogy, revealed by the bubble trapping. The divergence of the
velocity and the topological change bear a striking simi-
larity to the capillary-inertial singularities observed for
driven Faraday waves [19] and for bubbles bursting at
the free surface of a liquid [10]. For these two cases, the
singular behavior can be accounted for by balancing cap-
illary and inertial forces. It was shown, see, e.g., [19], that
all length scales behave self-similarly as |r — 7.|*/3, with ¢,
the collapse time. Our camera is not fast enough to follow
the ultrafast collapse dynamics of the air cavity prior to the
jet formation [Fig. 1(d)]. However, we did manage to
monitor the shape of the jet profile for Vipp.. slightly
above Vi1, and, consequently, probe the dynamics after
the singularity. Theoretically there is no reason why the
length scales should not follow the same |r — 7|2/ behav-
ior after the singularity. However, this post-singular regime
has hardly ever been investigated in detail [20]. Figure 5
shows the rescaling of the different jet profiles taken at a
regular time interval. The different profiles converge rea-
sonably well onto a single master curve, in agreement with
the idea that the dynamics after the singularity is still
governed by capillary-inertial self-similar dynamics. The
rather surprising conclusion is, therefore, that although the
jet velocity diverges upon approaching both Vi and
Vi-m, the underlying collapse singularities leading to the
jet divergence is fundamentally different in the two cases.

In summary, we have shown here that gentle drop im-
pacts can lead to singular behavior. The most surprising

features of this are the anomalously small lengths and high
velocities: very narrow jets are formed that shoot out with
speeds up to 40 times the drop impact velocity. As is the
case for all singular jets in liquids, granular media, for
Faraday waves, etc., the jet formation is preceded by the
collapse of an air cavity. It is this singularity that is
responsible for the selection of the anomalous length and
velocity scales of the jets. We have related here, for the first
time, the collapse dynamics of the cavity to the divergence
of the speed of the jet. An open question remains what
intrinsic length scale provides the cutoff mechanism for the
singularity. In our experiment, close to Vi.;; the maximum
velocity of the jet is bound by the minimum radius the
cavity can reach. This turns out to be rather different from a
microscopic length scale: the cylindrical cavity destabil-
izes at = 50 um, the reason for which remains unclear.
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