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Wang-Landau Algorithm for Continuous Models and Joint Density of States
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We present a modified Wang-Landau algorithm for models with continuous degrees of freedom. We
demonstrate this algorithm with the calculation of the joint density of states of ferromagnet Heisenberg
models and a model polymer chain. The joint density of states contains more information than the density
of states of a single variable-energy, but is also much more time consuming to calculate. We present
strategies to significantly speed up this calculation for large systems over a large range of energy and order
parameter.
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FIG. 1 (color online). (a) lng�M;E� of a three-dimensional
Heisenberg ferromagnet of size L � 10 with cutoff energy at
�2:8, determined up to an additive constant. (b) The magneti-
zation at different temperature and external field evaluated from
g�M;E�.
The Wang-Landau (WL) algorithm [1] has been applied
to a broad spectrum of interesting problems in statistical
physics and biophysics [1–9]. These successful applica-
tions can be attributed to two features of this algorithm.
First, the WL algorithm is not trapped by local energy
minima. Secondly, by calculating the density of states,
we can estimate thermodynamic observables including
the free energy over a wide range of temperature with
one single simulation. The efficiency and convergence of
the WL algorithm has been quantitatively studied [10,11],
and variations [6–8] and improvements have been pro-
posed [4,5,12,13], among which the most interesting are
those intended for systems with continuous degrees of
freedom, e.g., protein [4] and liquids [5–7]. For such
systems it is useful, but expensive, to calculate the joint
density of states (JDOS) of two or more variables, e.g.,
g�V; E�where V is the volume and E is the energy. JDOS is
useful because quantities such as the free energy can be
calculated as a function of temperature and pressure.
Clearly, JDOS of continuous models provides information
for many interesting problems, however the extra informa-
tion does not come for free. Suppose we calculate the
JDOS g�M;E� of a 32� 32 Ising model on a square lattice,
a typical benchmark problem [1]. If every value of the
magnetization M is counted, g�M;E� costs about 103 times
the CPU time of g�E�, because g�M;E� contains about 103

times as many entries as g�E�. Therefore, such calculations
have been restricted to small systems [5,14], or a carefully
chosen small region in the parameter space [6,7]. Less
costly alternative methods have been introduced, e.g.,
EXEDOS [4], which restricts the simulation at a fixed
temperature instead of at a fixed external force field.

In this Letter, we discuss two strategies to efficiently
calculate JDOS for generic models with a continuous
degree of freedom, and give two examples. Our methods
are equally applicable to systems with a phase transition,
e.g., a classical Heisenberg ferromagnet, and biophysics
systems, e.g., protein models. For the ferromagnet, we are
interested in g�M;E�, where M is the magnetization; while
06=96(12)=120201(4)$23.00 12020
for protein models, we are interested in g��; E�, where � is
a reaction coordinate [4].

We first show the result of our calculation for a three-
dimensional Heisenberg ferromagnet in Fig. 1. The
Hamiltonian of this model is H � �

P
hi;jiSi � Sj, where

the summation goes over nearest neighbors on a cubic
lattice of size L with periodic boundary conditions. This
model has a ferromagnetic phase transition and displays
global spin rotational symmetry. Here we define E �
H=L3 and M � L�3P

iS
z
i . Figure 1(a) shows lng�M;E�

for negative E. A region with @ lng=@M � 0 below E �
�1:2 indicates a transition to the ferromagnetic phase with
a global rotational symmetry. Near the ground state
lng�M;E� is logarithmically divergent, since the JDOS
vanishes when E or M is maximized or minimized. In
the following, we use the Heisenberg ferromagnet as a
prototype model to identify several features and intrinsic
difficulties of continuous models.

In general, the models we study have many microscopic
degrees of freedom s � �s1; . . . ; sN�, which labels the mi-
croscopic states in the phase space �. The Hamiltonian
H�s� is a real-valued function of s; so is the order parame-
ter, e.g., magnetization M�s� for the Heisenberg ferromag-
net. The JDOS is defined as
1-1 © 2006 The American Physical Society
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g�M;E�� j�j�1
Z

�idsi��E�H�s����M�M�s��; (1)

where j�j is the volume of the phase space, and the
integral is replaced by a summation for discrete models.
We refer to a pair (M;E) as a macroscopic state, and define
the macroscopic phase space � � f�M;E�j9s;H�s� �
E;M�s� � Mg. Obviously g�M;E� � 0 is a probability
measure of � induced by an a priori probability measure
of �. In the following, we denote (M;E) collectively with
x. The WL algorithm learns g�x� in with a simple strategy.
In a word, it substitutes exp��E=T� in a Metropolis algo-
rithm with exp��w�x�	, where w�x� is an approximation to
lng�x�, and updatesw�x�withw�x� 
 lnf when the random
walker arrives at state x. Here f is called the modification
factor. Previous studies [1,11] showed that for a discrete set
of x, w�x� quickly converges to lng�x� within some statis-
tical error proportional to

����
�
p

for �! 0. For a continuous
system, one cannot update g�x� point by point but requires
an algorithm that exploits the continuity of this function.

The simple binning scheme effectively approximates
g�x� with a piecewise constant function. By using suffi-
ciently many bins, this method does work for g�E� [15];
however, for JDOS this scheme results in an excessively
large number of bins to sample, which will hamper the
convergence. This can be avoided by using bilinear inter-
polation among neighboring bins [5]. Here we have
adopted a kernel function update scheme similar to that
of Ref. [16] for metadynamics, which seems more consis-
tent with the continuous nature of g�x�. We select a local-
ized positive continuous kernel function k�x� � 0, and
scale it by two constants � and �: k�x� ! �k�x=��. If the
random walker arrives in x0, then the continuous histogram
w�x� is updated by

w�x� ! w�x� 
 �k��x� x0�=��; (2)

and we express the acceptance rate as

Ai!f � minf1; exp� ln��w�xi� � w�xf�	�g; (3)

where we have inserted a constant ln� so that w�x� con-
verges to log�g�x�. We have implemented a Gaussian ker-
nel function k�x�� exp��jxj2�, as well as an Epanechnikov
kernel k�x� � �1� jxj2	
, and found no visible difference.
By slightly modifying the approach in Ref. [11], we can
prove the convergence of this scheme.

Thus the single modification factor in the original WL
algorithm is replaced by a triplet ��;�; ��. In our simula-
tions, we have used numbers between 0.0001 and 0.01 for
�, and � corresponding to about 1=200 of the width of the
energy or magnetization windows. Unlike the original WL
algorithm, we do not reduce � to extremely small values in
the simulation, nor do we change � in the simulation. We
have the freedom to change � provided that w�x� is prop-
erly rescaled.

If we start from an unbiased initial w0�x� � 0, we know
wT�x� (where T labels the number of Monte Carlo steps)
grows from the region of large g�x�, and extends to unex-
12020
plored region of small g�x� [11]. wT�x� can be written as:
wT�x� � �C�T� 
 log�g�x� 
 rT�x�	
, where C�T� is an
increasing function of T only, rT�x� is a bounded error
term controlled by the triplet ��;�; ��. wT�x� increases
monotonically in the simulation and remains zero in the
unexplored region. One cannot expect it to be flat as in the
original WL algorithm for discrete models. The simulation
should be stopped by other criteria, e.g., the visited area
reaches a low energy cutoff, after which we continue the
simulation with reduced � to improve the accuracy. If the
result is accurate, wT�x� increases uniformly in the visited
area. T is estimated by counting the number of kernel
functions used to build up wT�x�:

T �
�Z

�k�x=��dx
�
�1 Z

�
wT�x�dx: (4)

However, we find that the initial accumulation in which
�T � suppfwT�x�g expands to � takes a very long time for
JDOS. The expansion of �T slows down as the area of �T
increases. The reasons are twofold. First, the simulation
samples the macroscopic states within �T uniformly, giv-
ing rise to a uniform growth there. This uniform growth
takes a considerable CPU time, while only about a fraction
j�T j

�1=2 of Monte Carlo steps on the boundary of �T
happen to extend the simulation to the unexplored area.
Secondly, close to the singular boundaries of �,rlog�g�x�
becomes very large, requiring a very small � (high reso-
lution in the kernel function) to capture the large
derivative.

To avoid repeated sampling of the visited region �T , and
to push the simulation to the unexplored region, we find it
is most efficient to introduce a global update of wT�x�:
when wT�x� is a good estimate of log�g�x� inside �T , we
update wT�x� with the following formula:

wT�x�!wT�x�
�exp
�

��
wT�x��!

�
��wT�x��!�; (5)

where � is the Heaviside step function. Basically, wT�x� is
shifted up by an amount of � where wT�x�>!, and the
exponential function removes the resultant discontinuity.
Here ! is positive because the local update scheme re-
quires a minimum number of visits to give a correct
estimation of the density of states.

After this global update, the random walker is forced to
sample the boundary of �T ; only when the accumulation
on the boundary exceeds � is the random walker likely to
come back to the interior of �T . Possible artifacts that
result from the global update will then be quickly covered
up by local updates. Figure 2 illustrates one cycle of
calculation with the global update. The simulation is de-
composed into a number of cycles. In each cycle, the
simulation works on a subset �n of �, �n � fxjn� >
gmax � log�g�x�> �n� 1��g, where gmax is the maximum
of g�x�. In the nth cycle, the simulation roughly requires

Tn �
�Z

�k�x=��dx
�
�1 Z

�n

�log�g�x� � gmax 
 n�	dx
1-2
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FIG. 3 (color online). Comparison of CPU time used by the
calculations of g�M;E� with and without the global update for an
L � 5 Heisenberg model of ferromagnet; ! � 0:5 is used. The
dashed line is a guide for the eye.
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FIG. 4 (color online). Specific heat of the Heisenberg ferro-
magnet of size L � 10 and 5, with comparison to the results
from the original WL algorithm performed with a large number
of bins.
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FIG. 2 (color online). A cycle of the simulation with global
update. (a) original wT�x�, (b) wT�x� after the global update,
(c) the increment accumulated beginning with the wT�x� in (b),
(d) sum of (b) and (c) gives a new wT�x� in the end of this cycle.
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Monte Carlo steps. By comparison with Eq. (4), we see that
instead of filling up the bulk of wT�x�, the simulation only
fills up a thin surface layer of wT�x� of thickness roughly
given by �. Consequently, the algorithm with the global
update saves a huge number of Monte Carlo steps.
Compared with distributing the random walkers to a num-
ber of ‘‘windows’’ [1,5,12], the global update has the
advantage of automatically selecting the windows on the
frontier of the simulation and avoiding the boundary errors
[12]. Figure 3 shows that the global update saves 90% of
the CPU time in a typical simulation, where we plot t as a
function of maximum histogram W � w�0; 0�. Without the
global update, since the increment in W is due to the
uniform accumulation of samples inside the visited area
�T , therefore dt=dW / j�T j. From Fig. 1, we notice that
�T mainly grows towards lower energy. Hence we expect
approximately j�T j � aW 
 b, which results in a leading
quadratic dependence t / W2 in Fig. 3. With the global
update, both the prefactor and the exponent of this relation
are reduced. The short global samplings at the end of each
cycle result in T / W�, with � � 1:55 in Fig. 3.

The algorithm can be summarized as the following: A
calculation from scratch is divided into an initial accumu-
lation stage and a refining stage. In the initial accumulation
stage, (1) we start the calculation with w�x� � 0, using
local updates Eq. (2). (2) As soon as w�x�>! for some x,
we apply the global update Eq. (5), and continue the ac-
cumulation with local updates. wT�x� initially increases on
the boundary of �T . (3) After it resumes a uniform growth
over �T , we start the next cycle with another global update.
The refining stage starts when wT�x� expands to the entire
area of interest. Then we continue the simulation with only
local updates until a uniform growth ofwT�x� in this area is
observed. The JDOS can be refined with reduced � or
taking average of multiple uncorrelated results of wT�x�.
12020
We calculate the thermodynamic quantities from
g�M;E� with numerical integral. Figure 1(b) shows the
magnetization of a Heisenberg ferromagnet as a function
of external field and temperature. The specific heat in
Fig. 4 shows a typical peak at Tc of Heisenberg models.
We also compare our results with that calculated with the
original WL algorithm in Fig. 4, which evaluates g�E� on a
grid of 3000 bins. They only differ slightly at low tempera-
tures where both results show small errors. This error
comes from the binning or interpolation scheme used to
represent the continuous g�E� or g�M;E� (not from the
numerical integration).

Actually, given that the standard deviation of the canoni-

cal distribution of the energy is �E �
�������������������
T2Cv=L

3
p

� 0:036
for L � 10, T � 1, and �E � 0:1 for L � 5, an accurate
numerical integration requires enough data points within
1-3



FIG. 5 (color online). (a) JDOS g��; E� of a chain with
30 atoms. (b) The end-to-end length � as a function of pulling
force P at different temperatures.
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�E. This criterion applies to both our kernel function
updates and the bilinear interpolation scheme [5]. A larger
�E explains why the error is smaller for L � 5 in Fig. 4
than that for L � 10. In case of L � 10, the internal array
we used to store g�M;E� has an energy resolution of
0.0012, which is comparable to the bin size (0.001) of the
original WL algorithm we used for g�E�. Consequently,
they show errors of comparable sizes. The conclusion is
that the resolution in each macroscopic quantity must
increase as

����
N
p

to maintain the accuracy in the numerical
integral, where N is the number of degrees of freedom.

Our second example is a simple protein model whose
ground state is a perfect helix. The model is a polymer
chain of fixed bond length and bond angle; its dihedral
angles are the only degrees of freedom. We use our algo-
rithm to calculate g��; E�, where � is the end-to-end dis-
tance (referred to as a reaction coordinate in Ref. [4]) and
we use the same parameters as in Ref. [17] where it was
originally studied. Figure 5 shows the JDOS and � as a
function of the pulling force P at different temperatures for
a chain of 30 atoms. A high energy cutoff is needed
because the Lennard-Jones (LJ) repulsion has no upper
bound. Because of the geometric constraints, the smallest
polygon that the chain can form is a hexagon, in order to
have a large LJ term. In this case, six bonds are replaced by
the radius of the repulsion potential. Stretching the rest of
the chain as much as possible, one can estimate that the
threshold length is about � � 27. This threshold gives rise
to a clear shoulder structure in Fig. 5(a). ��P; T� is calcu-
lated in the same way as M�h; T� for the Heisenberg
ferromagnet. At low T and P � 0, � is the length of the
helix, which behaves as a Hook spring for small pulling
forces. The free energy for each � (calculated with the
EXEDOS algorithm in Ref. [4]) can be obtained by inte-
grating g��; E�e�E=T over E directly. This example only
took about half an hour on a single CPU.

In summary, we use kernel function local updates and a
global update to extend the WL algorithm to efficiently
treat continuous systems and their JDOS. Our new strat-
egies have potential applications to many complex systems
with thousands of degrees of freedom. In particular, the
12020
kernel function update benefits from the continuity of the
model; and the global update effectively drives the random
walker to unexplored areas, so that extreme values of
macroscopic variables can be searched. Compared to the
original WL algorithm, the global update saves about 90%
CPU time in our calculations. Recently, we have also
studied magnetic nanoparticles made of NiFe2O4 [18]
with our method presented in this Letter.
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