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Core Precession and Global Modes in Granular Bulk Flow
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We report a novel transition to core precession for granular flows in a split-bottomed shear cell. This
transition is related to a qualitative change in the 3D flow structure: For shallow layers of granular
material, the shear zones emanating from the split reach the free surface, while for deep layers the shear
zones meet below the surface, causing precession. The surface velocities reflect this transition by a change
of symmetry. As a function of layer depth, we find that three qualitatively different smooth and robust
granular flows can be created in this simple shearing geometry.
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FIG. 1. Core precession in a split-bottomed geometry.
(a) Schematic side-view of our split-bottomed shear cell, show-
ing the layer height H (indicated by dotted line), a stationary
bottom disk of radius Rs ( gray), the bottom ring (striped),
and outer cylinder of radius 105 mm that rotate with rate �.
(b), (c), (d), (e), (f) Series of snapshots of top views of our
setup (for Rs � 95 mm, H � 60 mm, and rotation rate � �
0:15 rad=s), where colored particles sprinkled on the surface
illustrate the core precession for t � 0 s (b), t � 10 s (c),
t � 102 s (d), t � 103 s (e), and t � 104 s (f).
Slowly sheared granular matter usually organizes into
rigid regions separated by narrow shear bands where the
material yields and flows [1–5]. Such grain flows appear to
prohibit successful continuum modeling—not only be-
cause of the steep gradients in velocity, but also because
subtle microscopic characteristics of the granulate can alter
the flow in a qualitative manner [3].

We recently showed that the formation of narrow shear
bands can be avoided by driving the granulate from a
discontinuity in the bottom support of the grain layer
[Fig. 1(a)], which effectively pins a wide shear zone
away from the sidewalls [6–8]. The resulting grain flows
are smooth and robust, with both velocity profiles and the
location of the shear zones exhibiting simple, grain inde-
pendent properties. These flows should be amenable to a
continuum description, which forms an important motiva-
tion for their detailed study [6–8]. The two crucial pa-
rameters of this system are the location Rs of the slip in the
bottom support, and the thickness of the granular layer H
[Fig. 1(a)]. When H=Rs is small, the core material rests on
the stationary center disc, and these flows have been char-
acterized recently [6,7]. With increasing H, the width of
these shear zones grows continuously, and their location
moves inward toward the central region [6]. This implies
that for deep layers new phenomena can be expected to
occur.

Figures 1(b)–1(f) illustrate the novel flow patterns that
are characteristic for deep layers. The most striking feature
is that the core now precesses with a constant rate—hence
material in the central part of the surface no longer rests on
the disc. Precession is not simply the consequence of the
overlap of two opposing shear zones, since before being
eroded by shear, the inner core rotates as a solid blob for an
appreciable time [Figs. 1(b)–1(f)]. A more intricate
mechanism is at play here.

In this Letter we will characterize this transition to
precession. We first address how the precession rate grows
with layer depth, and relate precession to a qualitative
change in the 3D structure of the flow field. We then
show how this change is reflected in a change of the
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symmetry of the surface velocity profiles. The location of
the shear zone at the surface for deep layers is compared to
an empirical scaling law [6] and a recent theory [7].
Finally, we employ the rich structure of the shear zones
for deep layers to establish that a crucial characteristic
mesoscopic length scale, which sets the width of the shear
zones, grows as a nontrivial power law with layer depth.

Setup.—Our setup is a modified version of the disk
geometry described in earlier work [6], and consists of a
stationary bottom disk of radius Rs, a rotating bottom ring,
and an outer cylinder of radius 105 mm [Fig. 1(a)]. The
disc radius Rs can be varied from 45 mm to 95 mm. The
cell is filled to a height H with a polydisperse mixture of
spherical glass beads with diameters ranging from 0.6 to
0.8 mm; a layer of grains is glued to the side walls and
bottom rings to obtain rough boundaries. No segregation
could be observed, and the free surface remains essentially
flat. The surface velocities are recovered by a variant of
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particle image velocimetry [6]. Transients are short and
average velocities are azimuthal and proportional to the
driving rate �. We represent the velocity profiles as !�r�,
the ratio of the average angular surface velocity, and �,
where r is the radial coordinate and � is fixed at
0:15 rad=s. Because ! is a ratio of a velocity and r, data
taken for r < 20 mm is unreliable and omitted from the
analysis.

Precession.—We define the precession rate !p as the
limit of !�r� for r going to zero. As explained above, !
cannot be measured reliably for small r. Nevertheless,!�r�
levels off for small radius, and in practice we fit a smooth
function to !�r� to estimate !p—various functions gave
very comparable results (see below). For various slip radii,
the onset height for precession grows with Rs [Fig. 2(a)],
and the data for !p collapses when plotted as a function of
H=Rs [Fig. 2(b)]. Note that when H=Rs becomes of order
one, the whole surface rotates rigidly and!p!1. Our data
is consistent with recent results in a similar setup where the
disc was rotated and the outer cylinder kept fixed [8].

3D flow structure.—The flow in the bulk has been
probed by putting patterns of lines of colored tracer parti-
cles at given height in the bulk, adding more material,
rotating the system for a short period (�8 s), and recover-
ing the deformed pattern by carefully removing the upper
layers of grains. In Fig. 3, two examples of the 3D flow
patterns illustrate that for shallow layers the shear zones
that emanate from the split in the bottom reach the free
surface, thus leading to a stationary core, while for deep
layers the shear zones (partially) meet in the bulk, leading
to precession of the core.

In a recent theory by Unger et al., the shear zones are
modeled as infinitely thin sliding sheets. This model pre-
dicts that for shallow layers the shear sheet reaches the free
surface but that for deep layers the shear sheet closes in the
bulk of the material, and that a hysteretic transition be-
tween these two states occurs for H=Rs � 0:65 [7].
Figure 3 illustrates that this change in the shear zones
with increasing height is also observed experimentally.
However, the model cannot capture the smooth velocity
fields observed experimentally and predicts a hysteretic
jump between !p � 0 and !p � 1, while our data shows
a smooth, nonhysteretic crossover.
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FIG. 2. (a) Precession rate !p as a function of H for
Rs � 45 mm (diamonds), Rs � 65 mm (	) and
Rs � 95 mm (circles). (b) Data collapse when !p is plotted as
a function of H=Rs.
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Recent MRI studies and numerical simulations evidence
that in the crossover regime where 0� !p � 1, the 3D
flow structure can be conceived as having two shear
zones—one reaching the free surface and one closing in
the bulk [8]. The relative amount of shear across these two
zones is set by the layer depth—for shallow layers the
vertical shear zones dominate and !p is small, for deeper
layers the horizontal shear zones increase in strength and
!p increases accordingly. Extending the sliding sheet
model [7] by taking disorder into account, Kertész et al.
have reached a similar conclusion [9].

Surface velocities.—In the remainder of this Letter, we
will focus on the surface velocities in the transitory regime,
which can be measured much more accurately than bulk
flow. Vertical gradients of the velocity are small near the
surface, so that what is observed at the surface is not
substantially different from what happens in the top layers
[6–8]. For shallow layers, we established in Ref. [6] that
!�r� is well fitted by

!�r� � nerf
�
r� Rc
W

�
; (1)

where Rc andW parameterize the location and width of the
shear zones, and nerf�x� denotes the normalized error
function 1=2� 1=2 errorf�x�. Figure 4(a) illustrates that
this relation breaks down for deeper layers—mainly be-
cause of precession. Moreover, before precession sets in, a
careful analysis reveals that the left-right symmetry of!�r�
is broken: the right (large r) tail of !�r� is significantly
steeper than its left (small r) tail for H * 0:45.
FIG. 3. 3D flow profiles around transition point. Left: Five
slices for H=Rs ’ 0:6 and heights Hb in the material as indi-
cated—here !p ’ 0. The kink in the patterns corresponds the
location of the shear zone. Right: Five slices at identical heights
Hb for larger H=Rs ’ 0:75, where !p ’ 0:8. The upper layers
show no deformation of the pattern indicating the absence of
shear. Below: Sketches of the shear zones within the bulk
(black)—the dashed curves indicate the heights Hb where the
patterns were created.
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These changes in the surface profiles reflect the
topological change in the 3D flow structure. For shallow
layers, two flow profiles obtained for the same height H,
but for two different slip radii (Rs1 and Rs2), are simply
related by a translation of the radial coordinate via
!�r� Rs1�jRs1;H � !�r� Rs2�jRs2;H—the shear zone is a
local phenomenon, insensitive to the location of the center
of the shear cell [6]. For deep layers, when ��r� becomes a
nonlinear function, this symmetry is absent, since the flow
is sensitive to where the center is—the shear mode is
global. The precession and symmetry breaking of !�r�
both reflect the crossover from a local to a global shear
mode—consistent with the change in the 3D structure of
the shear zones.

To capture the symmetry breaking and precession, !�r�
could be fitted to a four parameter fit: !�r� � p� �1�
p�nerf
�� s�2�, where � � �r� Rc�=W. Such fits con-
firm the independence of !p to details and the onset of
symmetry breaking before precession. More insight can be
gained when postulating that

!�r� � nerf
��r��; (2)

and calculating ��r� :� nerf�1
!�r�� from our experimen-
tally obtained velocity profiles. The resulting ��r�, shown
in Fig. 4(b), clearly bring out the deviations from the
simple form, Eq. (1). For shallow layers ��r� is a linear
function since !�r� obeys Eq. (1): ��r� � a0 � a1r �
�r� Rc�=W. For deep layers, ��r� becomes a nonlinear
function that saturates at a precession-dependent value for
r # 0. To fit ��r� for deep layers, the most obvious choice is
to add a symmetry breaking term �r2 —the resulting fit is
FIG. 4. Surface velocity profiles !�r� for Rs � 95 mm
and increasing layer depth H. Thick curves: H � 10;
20; . . . ; 80 mm; Thin curves H � 15; 25; . . . ; 75 mm; Dashed
curves H � 56; 57; . . . ; 69 mm. (a) Precession gradually sets in
for H * 60 mm. (b) Corresponding profiles of ��r� (dots),
compared to cubic fits given by Eq. (3) (curves). Similar to
panel (a), H � 10; 15; 20; . . . ; 55; 56; . . . ; 70 mm.
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rather poor. However, ��r� can be fitted well by a cubic
polynomial [see Fig. 4(b)]:

��r� � a0 � a1r� a3r
3: (3)

We do not see strong a priori reasons why this fit would
represent the true analytical form of the flow profiles.
However, the surprise is that a1 vanishes for large H (since
the slope near the intercept becomes zero), while a3 is zero
for small H. Hence, by the addition of one fit parameter to
the ‘‘pure’’ error-function form [Eq. (1)], !�r� for both the
shallow and deep regimes can be expressed in a simple
form. Moreover, both precession and symmetry breaking
are captured by this single extra parameter.

Location of the shear zone.—For shallow layers, where
!�r� is given by Eq. (1), the center location Rc is indepen-
dent of the particle properties and was found to follow the
simple scaling law [6]:

1� Rc=Rs � �H=Rs�5=2: (4)

The recent theory of Unger et al. [7] predicts the location of
the shear zones at the surface, Rmodel, for all layer depths
and deviates from the scaling relation Eq. (4). In Fig. 5 our
data for the center of the shear zones is compared to both
the power law and Unger’s numerical result. For general
shear zones, there is no unique choice for the center and we
have tested the following three definitions:

R1 :� where !�r� � 0:5; (5)

R2 :� where @r!�r� is maximal; (6)

R3 :� where @r
r!�r�� �strain rate� is maximal: (7)

For shallow layers, both R1 and R2 are better described by
Eq. (4) than by Rmodel, while R3 appears to be better
described by Rmodel. For deep layers, the situation is
more complicated, with neither model describing any of
the three measured curves in detail.

Mesoscopic Scale.—While the onset of precession and
location of the shear zones are set by the system scales H
andRs, the width of the shear zones are set by a mesoscopic
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FIG. 5. Shear zone positions versus layer depth H for Rs �
95 mm, where circles, pluses, and diamonds correspond to
R1, R2, and R3 [Eqs. (5)–(7)]; the solid curve is the scaling
form given by Eq. (4) and the dashed curve is the result by Unger
et al. [7].
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FIG. 6. (a) Width of shear zones W0 as a function of H for
Rs � 45, 65, and 95 mm. The saturation of W0 for large H is
related to the transition to precession—the eventual vanishing of
W0 is a fitting artefact caused by the flattening of the velocity
profile. (b) The nondimensionalized width W0R2=3

s d1=3 follows a
universal curve as a function of H=Rs, which for small heights is
approximated well by a power law with exponent 2=3 (straight
line). (c) Fit parameters a1 for Rs � 65 mm (diamonds) and
95 mm (+) and a3 for Rs � 65 mm (triangles) and 95 mm (stars)
as a function of H. (d) Nondimensionalized fit parameters as a
function of H=Rs (see text).
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length scale governed by both H and grain size d. Earlier
work for shallow layers was inconclusive about the func-
tional dependence of the width on layer height [6]. To be
able to discuss deep layers also, we define a widthW0 as the
interval where ! grows from !p � 0:1	 �1�!p� to
0:9	 �1�!p�—for shallow layers, W0 � 1:812W [see
Eq. (1)]. We will now show strong evidence for a meso-
scopic scale (Fig. 6), which grows as H2=3 and which
determines the width of the shear zones.

The first evidence comes directly from W0. For shallow
layers,W0 is independent of Rs, but for deep layers both the
microscale (d) and macroscale (Rs) play a role [Fig. 6(a)].
When we postulate that the ratio of the relevant length
scale to the grain size d (which we take as 0.7 mm) grows
as �H=d��, this suggests to plot the dimensionless width
W0=�R�s d1��� as a function of the dimensionless height
H=Rs and adjust � to get optimal collapse. As shown in
Fig. 6(b), this leads to a good data collapse for � � 2=3,
and moreover, for shallow layers, the rescaled width itself
grows as �H=Rs�2=3. Secondly, the fit parameters a1 and a3,
plotted in Fig. 6(c) for two values of Rs, have dimensions
of inverse length and inverse length cubed. It follows that
a1R

2=3
s d1=3 and a3R2

sd should collapse when plotted as a
function of H=Rs, as is indeed the case [Fig. 6(d)].

Outlook and open questions.—Detailed studies of the
granular flows in split bottom geometries [6–8] show a
wide range of smooth and robust flows. Three regimes can
be distinguished by fitting the surface flows to Eq. (1)–(3).
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Shallow layers occur for H=Rs & 0:45 where !p is zero,
a3 is zero and Eq. (1) fits the data well—here the shear
zones completely reach the free surface [6]. For 0:45 &

H=Rs & 0:65, a crossover regime is reached where the left-
right symmetry of !�r� is broken, both a1 and a3 are
nonzero but !p is essentially zero. Deep layers occur for
H=Rs * 0:65, where the reflection symmetry of the shear
zones is strongly broken, precession sets in, a1 tends to
zero and where there is increasing shear in the vertical
direction [8]. This robust behavior of grain flows in split
bottom geometries will provide important testing ground
for the development of (continuum) theories [7,9,10].

There are three questions that we think deserve particu-
lar attention. (i) What mechanism selects the functional
form of !�r�? In particular, the tails of these profiles
deserve special attention, since they can be exponential,
Gaussian, or more complex as shown in Fig. 4 [3,6,11].
(ii) What sets the nontrivial exponent 2=3 for the scaling of
the width of the shear zones? (iii) Should the transition to
precession be conceived as a smooth crossover or as a
sharply defined transition? The smooth growth of !p

withH=Rs suggests a crossover (Fig. 2), while the (critical)
vanishing of a1 with (H=Rs) [Figs. 6(c) and 6(d)] suggests
a sharp transition.
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