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Magnetization Plateaus Induced by a Coupling to the Lattice
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We present a novel mechanism for the appearance of magnetization plateaus in quasi-one-dimensional
quantum spin systems, which is induced by the coupling to the underlying lattice. We investigate in detail
a simple model of a frustrated spin-1=2 Heisenberg chain coupled to adiabatic phonons under an external
magnetic field, but the present mechanism is expected to be more general. Using field theoretic methods
complemented by extensive density matrix renormalization group techniques, we show that magnetization
plateaus at nontrivial rational values of the magnetization can be stabilized by the lattice coupling. We
suggest that such a scenario could be relevant for some low dimensional frustrated spin-Peierls
compounds.
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The field of quantum spin systems offers a wonderful
playground for both theorists and experimentalists to in-
vestigate a variety of exotic phases cooperatively induced
by frustration and a magnetic field [1]. In addition, low
dimensional spin systems such as spin chains and ladders
have revealed very interesting properties such as the pres-
ence of plateaus in their magnetization curves [2,3]. It has
been shown theoretically that plateaus occur in general at
rational fractions of the saturation magnetization [2]. The
position of these plateaus is subject to a quantization
condition that involves the volume of a translationally
invariant unit cell. From the experimental side, different
materials have been found which exhibit plateaus [4].
These well understood cases have in common the fact
that the appearance of a given plateau is directly connected
with the opening of a spin gap.

In this Letter, supported by both analytical and numeri-
cal calculations, we argue that a moderate lattice coupling
can generate an extremely rich magnetic phase diagram
with a zoo of new M � p=q (rational) plateau states. The
main difference from the previously studied cases of purely
magnetic systems, is that, as we show here, a different
mechanism is responsible for the stabilization of a plateau.
We show, in particular, that due to the coupling to the
lattice distortions which adapts to the spin modulation,
a spin gap is always present, which could be measured,
e.g., in inelastic neutron experiments, but plateaus appear
only at certain special (rational) values of the saturation
magnetization.

Experimentally, the lattice coupling is known to be
crucial in spin-Peierls materials like CuGeO3 [5]. It has
also been proposed to be responsible for a spontaneous
tetramerization [6] in the spin-1=2 LiV2O5 chain com-
pound [7]. A cooperative effect of the magnetic field and
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the coupling to an adiabatic lattice was shown to produce in
two-leg spin ladders long-range modulated structures [8]
for several rational values of the magnetization M.
Whether these modulated states give rise to magnetization
plateaus or not is still an open issue.

The role of the lattice distortions on the stabilization of
plateau states has been addressed in [9,10] in connection to
the two-dimensional material SrCu2�BO3�2 (For classical
spins on the pyrochlore lattice see [11]).

Such an investigation is performed here in the particular
case of the zigzag chain geometry, but the mechanism
presented is expected to be more general, whenever adia-
batic phonons have to be taken into account. From the
experimental point of view, SrCuO2 [12] and copper ger-
manate (CuGeO3) [5] are fairly good experimental realiza-
tions of this geometry.

The underlying richness of the zigzag chain physics is
manifest, in particular, under an external magnetic field
[13,14]. The magnetic phase diagram shows, in particular,
a plateau at M � 1=3 with spontaneous breaking of the
lattice symmetry of period q � 3. These two features are
expected simultaneously from the quantization condition
qS�1�M�� integer [2]. It should be stressed that the pure
zigzag spin chain model does not show other (M � 0)
plateau phases besides the 1=3 plateau state. We show
below that the situation changes drastically in the presence
of lattice distortions.

The Hamiltonian of a frustrated spin chain coupled to
adiabatic phonons in a magnetic field (H) is written as,

H �
1

2
K
X
i

�2
i � J1

X
i

�1� A1�i� ~Si � ~Si�1

� J2

X
i

~Si � ~Si�2 �H
X
i

Szi : (1)
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H is measured in units where g�B � 1, �i is the distortion
of the bond between site i and i� 1, K the spring constant,
and the first term corresponds to the elastic energy loss. J1

sets the energy scale and we fix J1 � 1 in what follows.
The spin-lattice coupling A1 is dimensionless so that the

distortions �i are given in units of the lattice spacing.
Following [6] we redefine the coupling strengths as ~A1 �

A1�1=K�1=2, although the modulations �i depend on A1 and
K, separately.

Let us start with the simplest limit J2 � 0. In that case
we know that the system dimerizes for any A1 � 0, open-
ing a spin gap and hence leading to a plateau at M � 0 in
the magnetization curve. In the presence of an external
magnetic field the lattice distortion adapts to rest commen-
surate at any value of M.

To recover these well-known results within bosoniza-
tion, let us construct the bosonized version of (1) for J2 �
0. In the absence of phonons, we can write the low energy
Hamiltonian for the spin system as

Hcont
XXZ �

v
2

Z
dx
�
KL�@x ~��x��2 �

1

KL
�@x��x��2

�
; (2)

where ~� is the field dual to the scalar field � and it is
defined in terms of its canonical momentum as @x ~� � �.
The magnetic field effect enters through the Luttinger
parameter KL and the Fermi velocity v, which depend on
the magnetization M.

In the low energy limit, the term / A1 gives a contribu-
tion to the energy which reads

��A1

Z
dx��x�: cos�2kFx�

�������
2�
p

��: : (3)

It is then straightforward to conclude that the leading
instability of the lattice deformation that minimizes the
energy takes the form

��x� � �0�M� cos�2kFx�; (4)

where �0�M � 0� � �c. This corresponds to the so-called
fixed modulation which captures the main qualitative fea-
tures of the model. This statement can be verified by
computing the lattice modulations in a self-consistent
way following [15], for which a solution can be approxi-
mated by (4) plus subleading higher harmonics contribu-
tions. The amplitudes of higher harmonics are generically
smaller than the leading one and will then not be consid-
ered in the following bosonization analysis [16]. At zero
field this modulation produces a total energy gain given by

Emod�f��x�g� � K�0�0�
2 � �A1�0�0�

Z
dx: cos�

�������
2�
p

��:;

(5)

while for the nonzero field we have

K
2
�0�M�2 �

�
2
A1�0�M�

Z
dx: cos�

�������
2�
p

��:� h
M
2
: (6)
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If we assume a smooth variation of �0�M� with M [18], we
can conclude that we need a finite magnetic field to start
increasing M from zero. In that case we have a plateau at
M � 0 up to a critical field hc, after which the magnetiza-
tion jumps to the value Ms such that the product�hcMs=2
is of the order of the contribution to the energy due to the
modulation Emod, Eq. (5). Because of the presence of the
relevant term / cos�

�������
2�
p

��, the system has a spin gap for
all magnetizations. However, the situation described above
(plateau and jump) occurs only around M � 0 and there
are no further plateaus in the magnetization curve, in
accordance with the numerical results [19]. The ground
state structure above the M � 0 plateau has been studied
extensively (see, e.g., [20] and references therein) and it
comes out that a soliton lattice with a periodicity 2kF starts
to develop. The only difference found in the magnetization
curve between simulations with fixed and adaptive modu-
lation (when the lattice deformation is determined from
minimizing the total energy in a self-consistent iterative
form) is a change in the order of the transition fromM � 0,
that changes from first to second order.

The presence of a spin gap for all magnetizations with-
out plateaus could be measured in inelastic neutron scat-
tering experiments. This can be illustrated by a simple
intuitive argument: the time scale of neutrons scattering
is too short to lead to a relaxation of the lattice accompany-
ing a spin excitation while the magnetization process is a
thermodynamic quantity.

If we add J2 a different situation can occur, and, in
particular, nontrivial plateaus can appear in certain regions
of the parameter space. Let us analyze the case ofM � 1=3
with a modulation of the form ��x� � �0�1=3� cos�2�3 x�.
Combining this modulation with the second harmonics of
the energy density �: cos�4kFx� 2

�������
2�
p

��: we obtain an
interaction energy given by

�A1�0�1=3�
Z
dx��: cos�

�������
2�
p

��:� �: cos�2
�������
2�
p

��:� :

(7)

To minimize the energy, the second cosine interaction is
pinned at the minimum of the first one and hence we have
again a particular situation for M � 1=3, since the second
harmonics becomes commensurate only for this value of
the magnetization. The presence of a plateau at 1=3 de-
pends on the scaling dimension of the second cosine inter-
action, which depends on J2, and from a first order analysis
one can estimate that it will be relevant for values of J2

close to the couplings in CuGeO3, in which J2 	
0:24–0:36J1.

This is a new generic mechanism for the appearance of a
plateau due to the spin-phonon coupling. The novelty is
that the plateau is not produced by the commensurability of
the main (relevant) harmonics (as for the zero magnetiza-
tion case) but it is due to the commensurability of the next-
to-leading harmonics, whenever it is relevant.
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FIG. 1 (color online). M�H� for the 36, 60, and 84 sites for
J2 � 0:4 and ~A�0 � 0:4 in the case of fixed modulation and
OBC. The inset shows the finite size scaling of the width of the
different plateaus.
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FIG. 2 (color online). M�H� for 36, 48, and 60 sites for J2 �
0:5 and ~A1 � 0:8 in the case of an adaptive modulation and PBC.
The solid line is an extrapolation to the thermodynamical limit.
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Note that a plateau at M � 1=3 is present in the J1 � J2

chain without phonons, but in that case, the plateau mecha-
nism is the usual one (so-called classical, since it is well
visualized in the Ising limit [21]) and it is driven by the
operator : cos�3

�������
2�
p

��: which needs larger values of
J2=J1 than in the present case to become relevant. The
present situation is thus much more favorable, making it
potentially observable in experiments. Moreover, this pla-
teau can be present also in the extreme anisotropic XY
case.

To study the transition from and to the plateau at M �
1=3, we are in a similar situation as for the M � 0 case in
the normal chain discussed above from which we conclude
that we have jumps in M�h� at both ends of the M � 1=3
plateau. It would be interesting to analyze the formation of
a soliton lattice similar to that appearing above M � 0 in
the present case. We expect that the only modification from
fixed to adaptive modulations will be again in the order of
the transition.

This analysis can be applied to more general situations,
e.g., for a single XXZ chain where one can also expect a
1=3 plateau in the Ising regime. In this case one would need
a rather big Ising anisotropy � * 10 for the second har-
monics to be relevant [22].

A similar situation is found forM � 1=2 for the J1 � J2

case, where the second cosine in (7) is now replaced by
: cos�3

�������
2�
p

��: and is hence less relevant. In the present
case, a first order estimate hints that the 1=2 plateau could
occur at moderate values of J2. Notice that this third
harmonics is responsible for the plateau at 1=3 in the J1 �
J2 case without phonons [13,23].

We now turn to a numerical analysis of the magnetiza-
tion process of Hamiltonian (1). We have used the density
matrix renormalization group (DMRG) method to obtain
the ground state energy E�Sz� in each subspace of the Sz
operator (the z component of the total spin of the chain) on
a finite chain of Ns sites with open (OBC) or periodic
boundary conditions (PBC). Furthermore, minimizing E �
E�Sz� �HSz we have found the magnetization M � 2Sz

Ns
as

a function of the applied magnetic field H.
To begin with, we assume a phonon field �i with a fixed

periodic modulation �i � �0 cos���1�M�i�, as in the
previous analytic treatment. In Fig. 1 we show the magne-
tization as a function of H for three different system sizes
and open boundary condition. Parameters are J2

J1
� 0:4 (for

which no plateau is present in the pure J1 � J2 chain [24])
and ~A1�0 � 0:4. A finite size scaling study of the critical
fields is shown in the inset of this figure. The plateaus
widths at M � 1=3 and M � 1=2 extrapole to finite
(although small) values in the thermodynamical limit, in
agreement with the bosonization analysis. Let us proceed
in a more general way, assuming periodic boundaries and
minimizing the total energy with respect to all nonequiva-
lent lattice coordinates �i. We use the iterative procedure
proposed by Feiguin et al. [15] and implemented within a
11720
DMRG approach by Schönfeld et al. [25]. The algorithm
has been constructed by using an initial (periodic) ansatz
for the �i parameters and obtaining a new set of �i from the
adiabatic equation, �i � ~A1hSi:Si�1i, with the constraintP
i�i � 0. The procedure is iterated until convergence for

the energy and the distortions. Obtaining the distortion
pattern in all Sz subspaces, the magnetization curve is
then generated. In Fig. 2 we show M�H� for J2 � 0:5
and A1 � 0:8. The plateaus at M � 1=3 and M � 1=2
are clearly seen. A finite size scaling analysis gives
0.1433 for the width of the plateau at M � 1=3 and
0.1654 for the one at M � 1=2.

Finally we performed a careful finite size scaling analy-
sis of the regions of stability of the two most robust
plateaus. For that purpose, it is only necessary to consider
the Sz values around magnetizations 1=3 and 1=2.
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FIG. 3. Region of stability of the 1=3 and 1=2 plateaus ob-
tained from a finite size scaling of the critical fields as a function
of J2

J1
in the interval �0:5; 0:7� and for A1 � 0:8. Stability of the

other plateau phases is not excluded.
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Although we have applied the same iterative procedure as
discussed previously, here we have restricted ourselves (at
each step) to distortion patterns which fit within the ex-
pected supercell [26], a procedure which greatly improves
the convergence towards the optimum configuration. The
‘‘phase diagram’’ representing the region of stability of the
M � 1=3 and M � 1=2 plateaus with J2

J1
is shown in Fig. 3.

Note that stability of other rational plateau phases sug-
gested by the bosonization approach or by the naive fixed
modulation calculation (see Fig. 1) are not at all excluded.
However, such phases, which probably have quite narrow
widths, are difficult to identify on small clusters.

In conclusion, we have described a new mechanism
leading to the formation of rational magnetization plateau
phases. It involves a subtle interplay between magnetic
frustration and lattice coupling. Our claims are supported
by both analytical and numerical calculations. We suggest
that a quasi-one-dimensional spin-Peierls systems, like
CuGeO3 [5] and tetrathiafulvalene-AuS4C4�CF3�4 [27],
where both phonons and frustration play a role, would be
the most natural candidates to observe such a phenomenon.
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