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Two-Site Entropy and Quantum Phase Transitions in Low-Dimensional Models
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We propose a new approach to study quantum phase transitions in low-dimensional lattice models. It is
based on studying the von Neumann entropy of two neighboring central sites in a long chain. It is
demonstrated that the procedure works equally well for fermionic and spin models, and the two-site
entropy is a better indicator of quantum phase transition than calculating gaps, order parameters, or the
single-site entropy. The method is especially convenient when the density-matrix renormalization-group
algorithm is used.
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FIG. 1. � dependence of the single-site entropy of the central
site of the isotropic spin-1 chain, determined for different chain
lengths.
The search for the ground state and the study of quantum
phase transitions (QPTs) are challenging problems when
strongly correlated fermionic or spin systems are consid-
ered. Since exactly solvable models are rare, in most cases
the relevant part of the excitation spectrum, the order
parameters characterizing the various phases, or eventually
susceptibilities are determined numerically on finite chains
and their thermodynamic limit is determined using the
standard finite-size scaling method. Unfortunately, in sev-
eral cases no definite conclusions can be drawn even if the
calculations are performed on rather long chains.

In this Letter, we propose a new approach to detect QPTs
and to locate the quantum critical point in low-dimensional
spin or fermionic models. It is based on studying the
behavior of the von Neumann entropy of two neighbor-
ing sites in the middle of a long chain, which can be de-
fined both for fermionic and spin models, and can be
especially easily implemented when the density-matrix
renormalization-group (DMRG) algorithm [1] is used.

The method is closely related to concepts in quantum
information theory, which recently have attracted great
attention in relation to QPTs. Wu et al. [2] have shown
that quite generally QPTs are signaled by a discontinuity in
some measure of entanglement in the quantum system.
One such measure is the concurrence [3] which has been
used by a number of authors [4–10] in their study of spin
models. Since the concurrence is defined for spin-1=2
systems only, for higher spins or fermionic models another
measure of entanglement is needed.

The local measure of entanglement, the one-site entropy,
which is obtained from the reduced density matrix �i at site
i, has been proposed by Zanardi [11] and Gu et al. [12] to
identify QPTs. Contrary to their expectation, in many
cases, this quantity turns out to be insensitive to QPT. As
an example, let us consider the most general isotropic spin-
1 chain model described by the Hamiltonian

H �
X

i

�cos��Si � Si�1� � sin��Si � Si�1�
2�: (1)

In 1D, the model can be solved exactly at � � ��=4 and
� � �3�=4, and is known to have at least four different
phases [13]. The ground state is ferromagnetic for � <
06=96(11)=116401(4)$23.00 11640
	3�=4 and � > �=2, while in between the integrable
points separate the Haldane phase, which exists in the
range	�=4< �< �=4, from the dimerized and the quan-
tum spin-nematic phases, respectively. The existence of
another phase, the quantum quadrupolar phase [14] near
� � 	3�=4, is not settled yet [15]. These phases and the
corresponding QPTs do not show up at all in the local
entropy. As can be seen in Fig. 1, the site entropy has the
value si � ln3 in the whole range 	3�=4< �< �=2.
This is due to the unbroken SU(2) symmetry in the non-
polarized states. In the totally aligned ferromagnetic state,
finite value is obtained for the single-site entropy, because
the Sztot � 0 component of this state is considered.

The aim of this Letter is to point out that a better
indicator is obtained if instead of the entropy of a single
site, the entropy of two neighboring central sites,

si;i�1 � 	Tr�i;i�1 ln�i;i�1; (2)

is studied, where �i;i�1 is the reduced density matrix of the
two sites. A related quantity has been used in [16] to
characterize the interaction between states in quantum
chemistry. We will demonstrate that if—in order to avoid
boundary effects—sites in the middle of long chains are
considered, i.e., for i � N=2 and i � N=2� 1, where N is
the number of sites in the chain, anomalies are developing
in this quantity, and their analysis can be used to detect
quantum phase transitions in low-dimensional lattice mod-
els. This procedure is especially convenient when a dimeri-
zation transition is studied. In this case, namely, the dif-
1-1 © 2006 The American Physical Society
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ference of two-site entropies on neighboring sites in the
center of the chain,

Ds�i� � si�1;i�2 	 si;i�1; i � N=2; (3)

is finite, but the method works for other types of transi-
tions, as well.

As usual in the DMRG approach, we considered open
chains. The numerical calculations were performed on
finite chains up to 400 lattice sites using the dynamic
block-state selection (DBSS) approach [17]. The threshold
value of the quantum information loss � has been set to
10	8. Similar anomalies appear in the two-site entropy
when periodic boundary condition is used, except that Ds
is meaningless in this case.

As a first example the results obtained for the biliniear-
biquadratic model are shown in Fig. 2. The upper panel
shows si;i�1 for i � N=2 and i � N=2� 1, while Ds�N=2�
is displayed in the lower panel.

In the range 	3�=4< �<�=2, one can clearly distin-
guish three regimes. The most pronounced feature is that
the two-site entropy is strongly dimerized for 	3�=4<
�<	�=4, which reflects the dimerization of the valence-
bond structure in this regime. The quantity si;i�1 for i �
N=2 and i � N=2� 1 measures the entropy of a pair of
sites coupled by strong or weak bonds, respectively. The
lower panel shows that as longer and longer chains are
considered, the boundaries of the dimerized region scale to
the integrable points, � � 	�=4 and 	3�=4.

In the Haldane phase, where all neighbors are coupled
predominantly by one valence bond, as in the AKLT state
[18], the two-site entropy is not alternating; its minimum is
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FIG. 2. (a) � dependence of the two-site entropy si;i�1 for i �
N=2 and i � N=2� 1 of the isotropic spin-1 chain for different
chain lengths. The results for i � N=2 are displayed for N �
400 only. (b) Dimerization of the two-site entropy.
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at the AKLT point. Right at � � �=4, where the model has
SU(3) symmetry, the two-site entropy is discontinuous;
moreover in the thermodynamic limit, a kink appears
between the left and right sides of this point, which is a
clear indication of the transition from the Haldane phase
into the quantum spin-nematic phase.

Having demonstrated the usefulness of the study of the
two-site entropy on a model where the quantum critical
points were known, we now use this procedure to study the
phase diagram of two 1D fermionic models proposed to
explain the neutral-ionic (N-I) transition first observed in
organic mixed-stack charge-transfer salts [19].

The ionic Hubbard model [20] is defined by the
Hamiltonian

H � t
X

i�

�cyi�ci�1� � c
y
i�1�ci�� �U

X

i

ni"ni#

�
�

2

X

i�

�	1�ini�: (4)

When the number of electrons is exactly equal to the
number of sites, the competition between the on-site en-
ergy difference � and the Coulomb energy U will deter-
mine whether the system is a band insulator (U < �)
where both the charge and spin gaps are finite or a corre-
lated Mott insulator (U >�) where only the charge gap is
finite. When hopping is negligibly weak, the transition
takes place at U � �. As was first pointed out by
Fabrizio et al. [21], for finite t values the transition between
these two states occurs in two steps. The charge gap closes
and reopens at a critical value Uc, while the spin gap
vanishes at a different value Us. The transition at U �
Uc is Ising-like while the one atUs is a Kosterlitz-Thouless
transition. A dimerized bond-order phase exists between
the two critical values Uc <U <Us.

Since then the model has been studied in detail by
several groups [22–27] using both analytic and numerical
methods. Despite the many efforts, the controversy con-
cerning the number of transitions was not resolved until
recently [23,26,27]. The difficulty can be seen from Fig. 3,
which shows the dimer order parameter (the energy differ-
ence of neighboring bonds) for finite chains with open
boundary condition. Using the standard finite-size scaling
procedure the vanishing of the dimer order cannot be
established with certainty from these data.

Moreover, in contrast to what has been found in the
extended Hubbard model [7], the single-site entropy is a
rather smooth curve without sharp extremum or disconti-
nuity in the derivative. If, however, the two-site entropy is
analyzed, two transitions can be identified. The results for
t=� � 1 are shown in Fig. 4. The two curves for fixed N
correspond to si;i�1 with i � N=2 and i � N=2� 1. Simi-
lar behavior has been found for other values of t=�, too.

The Ising-like transition, the point where the two-site
entropy becomes dimerized, can be rather well located. On
the other hand the Kosterlitz-Thouless transition at larger
values of the Coulomb coupling, where the dimerization
1-2
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FIG. 5. Single-site entropy of the donor-acceptor model for
t=� � 1 for different chain lengths.
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FIG. 3. (a) Dimer order parameter of the ionic Hubbard model
for t=� � 1 for different chain lengths. (b) Entropy of the central
site.
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disappears again, cannot be established with certainty by
looking at Ds alone. Standard finite-size scaling does not
give a vanishing Ds. However, the maxima in si;i�1 for i �
N=2� 1 develop into a cusp in the thermodynamic limit,
and this should be attributed to the second transition.

As a next example we have considered another model
proposed to describe the neutral-ionic transition [28]. In
this model donor molecules with ionization energy I and
acceptor molecules with electron affinity A, respectively,
alternate. If the energies are measured with respect to the
neutral state, in which the donors are doubly occupied and
the acceptors are empty, the molecular levels are described
by the Hamiltonian

H 0 � I
X

i

�2	 n2i� �UD

X

i

�1	 n2i;"��1	 n2i;#�

	 A
X

i

n2i	1 �UA

X

i

n2i	1;"n2i	1;#; (5)

and the hopping, the charge transfer between neighboring
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FIG. 4. Two-site entropy si;i�1 for i � N=2 and i � N=2� 1
of the ionic Hubbard model for t=� � 1 for different chain
lengths.
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donors and acceptors, is given by

H CT � t
X

i�

�cy2i��c2i	1;� � c2i�1;�� � �c
y
2i	1;�

� cy2i�1;��c2i;��: (6)

In realistic charge-transfer salts the on-site Coulomb
energy is presumably the largest energy, so it is reasonable
to assume that its unique role is to forbid doubly ionized
(empty) donors and doubly ionized (doubly occupied)
acceptors. The transition between the neutral and ionic
phases is driven by the intersite Coulomb coupling,

H C � 	V
X

i

�2	 n2i��n2i	1 � n2i�1�: (7)

The relevant parameter is V=�, where � � 1
2 �I 	 A�.

This problem has been studied by exact diagonalization
on relatively short chains [28] as well as by valence-bond
techniques [29]. For small transfer integral the model was
found to exhibit a first-order phase transition from a neutral
to an ionic phase as a function of V=�. For t=� larger than
0.3 the transition changes character and a second-order
phase transition has been reported. Our numerical result
for the site entropy for t=� � 1 is shown in Fig. 5. A cusp
is clearly seen in the one-site entropy at V=� ’ 1:42,
indicating a single second-order transition, in agreement
with earlier expectations.
0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0.8

1

1.2

1.4

1.6

1.8

2

V/∆

T
w

o−
si

te
 e

nt
ro

py

40
80
200
400
∞

FIG. 6. Two-site entropy of the donor-acceptor model for
t=� � 1 for different chain lengths.
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FIG. 7. Entropy of blocks of N=2 and N=2� 1 sites of the
bilinear-biquadratic S � 1 model for a chain with N � 200 sites.
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Contrary to this, the two-site entropy shown in Fig. 6
exhibits the same behavior as the ionic Hubbard model. In
fact, as will be shown in a separate paper, the two models
are limiting cases of a unified model of neutral-ionic tran-
sition. Although, as for the ionic Hubbard model, it is not
easy to locate the vanishing of dimerization whenDs alone
is considered, the peak of si;i�1 for i � N=2� 1 produces
a cusp in the thermodynamic limit, indicating a second
transition. For small transfer integral, t=�< 0:3, the two
transition points coalesce, both the one and two-site en-
tropies exhibit a sharp jump, the transition is of first order.

In conclusion, we have shown that the entropy of
two central sites in a long open spin or fermionic chain,
which can be easily calculated in the density-matrix
renormalization-group procedure, provides us with extra
information not contained in the single-site entropy. The
two-site entropy displays maxima or break points at QPT
even in such cases when it is difficult to establish the
opening or closing of a gap, or the vanishing of an order
parameter, or when the single-site entropy is featureless
since it is insensitive to the breaking of symmetry that
distinguishes the two phases. Using this procedure, we
have demonstrated that the ionic Hubbard model and the
donor-acceptor model do, in fact, have two phase
transitions.

The procedure can be easily extended to considering the
entropy of not just two sites, but that of a longer segment,
whose length dependence is different whether the model is
critical or not [30]. Figure 7 shows the entropy of the block
of N=2 and N=2� 1 sites of an N � 200 chain for the
bilinear-biquadratic S � 1 model. The dimerization ap-
pears in the block entropy, as well, and the anomalies
whose location scales to the transition points � � ��=4
are more pronounced than in the two-site entropy. We have
learned, after the submission of our Letter, that the study of
the block-block entanglement in connection with quantum
phase transition has been proposed by Deng et al. [31]. Our
experience shows, however, that calculating the block
entropy with the same accuracy as that of two sites is a
numerically much more demanding task.
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[28] B. Horovitz and J. Sólyom, Phys. Rev. B 35, 7081

(1987).
[29] A. Painelli and A. Girlando, Phys. Rev. B 37, 5748

(1988).
[30] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev.

Lett. 90, 227902 (2003).
[31] S.-S. Deng, S.-J. Gu, and H.-Q. Lin, quant-ph/0511103.
1-4


