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First-Principles Calculations of Vibrational Lifetimes and Decay Channels:
Hydrogen-Related Modes in Si
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The vibrational lifetimes and decay channels of local vibrational modes are calculated from first
principles at various temperatures. Our method can be used to predict the temperature dependence of the
lifetime of any normal mode in any crystal. We focus here on the stretch modes of H�2, H�BC, and VH � HV
in Si. The frequencies are almost identical, but the lifetimes vary from 4 to 295 ps. The calculations
correctly predict the lifetimes for T > 50 K and illustrate the critical importance of pseudolocal modes in
the decay processes of high-frequency local vibrational modes.
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The relaxation dynamics of impurity-related local vibra-
tional modes (LVMs) in crystal are unpredictable. Indeed,
the lifetimes of nearly identical high-frequency modes are
observed to differ by up to 2 orders of magnitude. Since
these decays should not involve fewer than five crystal
phonons, the short lifetimes sometimes observed imply
that some LVMs couple to the phonon bath much more
efficiently than others. Although the temperature depen-
dence of the lifetimes can be fitted to a general formula, the
mechanisms involved in the fastest decay processes are not
at all understood.

The passivation by H or D of Si dangling bonds at the
Si=SiOx interface (Pb center) [1,2] illustrates the impor-
tance of vibrational lifetimes. The devices treated with D
have transconductance lifetimes 10–50 times longer than
those treated with H [3]. Inelastic scattering with hot
electrons excites the LVMs of the Si-H or Si-D bond.
The dissociation rate depends critically on the vibrational
lifetimes [4,5].

The lifetimes of several H-related stretch LVMs in Si
have been measured by transient bleaching spectroscopy
[6,7]. The low temperatures lifetimes of the 2062 cm�1

mode of H�2 � Si-HBC � � �Si-HAB [8] (BC and AB stand
for bond-centered and antibonding, respectively), the
1998 cm�1 mode of H�BC [6,9], and the 2072 cm�1 mode
of the divacancy dihydrogen complex [8,10] VH � HV are
4, 8, and 295 ps (that is, �250, 480, and 18 000 oscilla-
tions), respectively. Since the optical phonon of Si is
�530 cm�1, the decays should involve at least four pho-
nons and all these LVMs should have long lifetimes.

All vibrational lifetimes exhibit a strong temperature
dependence and fall off at higher temperatures. A general
expression for the temperature dependence of the lifetimes
[11,12] has been used to fit the experimental data to sets of
accepting modes [6,8]. In the case of H�BC, the fit yields
three acoustic (�150 cm�1) and three optic (�520 cm�1)
phonons. Although this fit is not unique, a fit using just
four accepting modes at 500 cm�1 fails to fit the data. A
good fit is also obtained for VH � HV with three acoustic
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(�343 cm�1) and two optic (�520 cm�1) phonons. Thus,
the theoretical model fails to explain why an 8 ps lifetime
should involve six phonons while a 295 ps one only five.

The measurements of the lifetimes of H-related wag
modes [13] yield a more straightforward explanation.
These lifetimes vary exponentially with the frequency
separation between the LVM and the receiving modes
(‘‘frequency-gap law’’). The farther away a LVM is from
the host crystal’s phonon bands, the longer the lifetime as
the decay involves an increasing number of phonons.

Bulk vibrational lifetimes in amorphous Si have been
estimated using the Stillinger-Weber potential by calculat-
ing decay rates [14] and by monitoring the exponential
decay of initial velocity amplitudes in molecular-dynamics
(MD) simulations at low temperatures [15]. Tight-binding
MD simulations have also been used [5] to calculate the
lifetime of the degenerate wag modes of Si-H and Si-D
bonds on an Si(111) surface, by displacing the H or D atom
along the eigenmode and monitoring the decay of the
oscillation in a network at T � 0 K.

In this work, we develop a first-principles scheme to
calculate vibrational lifetimes and decay channels at vari-
ous temperatures. The calculations predict the correct life-
times for H�2, H�BC, and VH � HV and provide insights into
the decay mechanism(s). In the case of H�2, the receiving
modes are unambiguously identified.

We use the SIESTA [16,17] code in 64 host-atoms super-
cells. Norm-conserving pseudopotentials in the Kleinman-
Bylander form [18] describe the core regions. The valence
regions are treated within first-principles local density-
functional theory with the exchange-correlation potential
of Ceperley-Alder [19] parametrized by Perdew-Zunger
[20]. The (double-zeta) basis sets for the valence states
are linear combinations of numerical atomic orbitals [21].
The charge density is projected on a real-space grid with
equivalent cutoffs of 80 Ry to calculate the exchange-
correlation and Hartree potentials. The dynamical matrices
are obtained from linear-response theory [22–24]. Their
eigenvalues are the normal-mode frequencies !s, and the
4-1 © 2006 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.96.115504


PRL 96, 115504 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
24 MARCH 2006
(orthonormal) eigenvectors es�i give the relative displace-
ments of the nuclei (� numbers the nuclei, i � x; y; z).

Figure 1 shows the square of the eigenvectors associated
with the H atom(s) and the two Si atoms it (they) are bound
vs !. For H�2 (top), the stretch modes are at 2126 cm�1 for
Si-HBC (measured [8] 2062 cm�1) and 1860 cm�1 for
Si-HAB (measured [25] 1844 cm�1). The doublets at 853
and 457 cm�1 are the wag modes of HAB and HBC, respec-
tively. The asymmetric stretch of H�BC (middle) is at
2014 cm�1 (measured [6] 1998 cm�1), and the wag modes
are at 261 cm�1. The modes at 209 and 410 cm�1 involve
the two Si neighbors of H: The two Si atoms move together
or opposite each other along the trigonal axis, respectively.
In VH � HV (bottom), the degenerate Si-H stretch modes
are at 2092 cm�1 (measured [8] 2072 cm�1), and the four
closely spaced modes near 597 cm�1 are the H wag modes.

The eigenvectors es�i are needed to transform the (har-
monic) normal-mode coordinates qs�As�T�cos�!st�’s�
into Cartesian nuclear displacements
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In thermal equilibrium, the average kinetic energy of each
mode is kBT=2, that is,
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all s, the energy of each mode is exactly kBT. Instead, we
use a random distribution
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to a distribution of normal-mode energies which averages
out to kBT.
FIG. 1 (color online). Plots of ��;i�e
s
�i�

2 (where � � H’s and
the two Si atoms bound to them) vs frequency. The vertical line
(�) is the calculated optical mode of Si.
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Therefore, in equilibrium at the temperature T, the
(harmonic) Cartesian positions and velocities are
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The random phases 0 	 ’s < 2� ensure that each mode
has a random amount of kinetic and potential energy. We
use these initial (t � 0) positions and velocities to prepare
the supercell in equilibrium at the temperature T. Tests of
these initial conditions in the range 50< T < 500 K show
that the temperature fluctuates around T with very small
and almost perfectly constant amplitudes from step 1. No
thermalization or thermostat are needed. This procedure is
similar to that described in Ref. [26].

We excite the LVM under study by assigning it the
kinetic energy 3@!=2 (zero-point energy plus one phonon)
in the supercell in thermal equilibrium at the temperature
T. This excitation is achieved using the appropriate eigen-
vector of the dynamical matrix. The slight increase in the
temperature it causes is small compared to the background
temperature of the cell. Note that we always use the same
initial excitation of the LVM and vary the equilibrium
temperature of the cell, an approach that mimics the ex-
perimental procedure. The constant-temperature MD run is
performed at the temperature T with a time step of 0.3 fs.
At every time step, we transform the 3N Cartesian coor-
dinates of the N nuclei into linear combinations of the 3N
normal modes. The amplitudes allow us to calculate the
energy of every normal mode as a function of (real) time, at
the temperature T.

Figure 2 shows the energy of the four highest-frequency
modes of H�2 at T � 50 K, with A denoting the Si-HBC

stretch (2126 cm�1), B denoting the Si-HAB stretch
FIG. 2 (color online). Time evolution of the energies of the
four highest-frequency modes of H�2 at T � 50 K.

4-2



PRL 96, 115504 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
24 MARCH 2006
(1860 cm�1), and C and D denoting the degenerate wag
modes of HAB (853 cm�1) and HBC (457 cm�1), respec-
tively. During the first 2 ps, A decays into B plus the mode
at 272 cm�1 (Fig. 1), which involves the two Si atoms in
H�2 oscillating against each other, while the 2 H atoms
remain essentially still. The wag modes C and D control
the decay of the 1860 cm�1 mode (B). The energy is then
transferred from C and D into bulk phonons.

Thus, the decay of the 2126 cm�1 mode of H�2 is not a
six-phonon process as assumed [8] but a two-phonon pro-
cess (1860 and 272 cm�1), and the lifetime fits on the
frequency-gap law [13]. Both phonons are localized on
the H�2 defect.

The case of H�BC is more complicated. There is no LVM
other than the 2014 cm�1 mode. Therefore, its decay
cannot involve fewer than four phonons and its lifetime
does not fit on the frequency-gap law. The modes associ-
ated with H�BC (Fig. 1) are the asymmetric stretch at
2014 cm�1, the two wag modes at 261 cm�1, and the
modes at 209 and 410 cm�1 associated with the two Si
neighbors of H. Except for the LVM at 2014 cm�1, all are
pseudolocal modes [27] (pLVMs) which readily couple to
bulk phonons. The energies of all the normal modes of the
supercell are shown in Fig. 3. The modes whose energies
peak sharply and repeatedly throughout the simulation are
the 410 cm�1 (B) and 261 cm�1 (C and D) modes.

We performed four MD simulations, each at T � 50,
100, and 150 K. The decay process is always very much the
same. The energy in the asymmetric stretch is absorbed by
the 410 and 209 cm�1 modes, which themselves decay
almost immediately into bulk phonon modes. This is ap-
parent when blowing up the inset in Fig. 3 (the inset
contains�12 000 time steps) to uncover the inner structure
of the B and C peaks.
FIG. 3 (color online). Energies of all the normal modes in the
supercell vs time during the decay of the 2014 cm�1 mode of
H�BC (A) at T � 75 K. The first 3.5 ps are enlarged in the inset
(see text).
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The details of the fast decay processes of H�BC and H�2 are
sensitive to the initial conditions. The random distributions
of initial mode energies and phases affect the amplitude of
a particular mode at t � 0 and, if this mode happens to be a
receiving mode, may cause different runs at the same
temperature to produce somewhat different lifetimes.
Therefore, for each temperature, we performed four runs
for H�BC and six runs for H�2 (experimentalists obtain an
average of the �1016 cm�3 centers detected simulta-
neously). We averaged the energy of the excited mode
over the various runs and fit the resulting curve to an
exponential. The results, shown in Fig. 4, are in nice
agreement with the measured temperature dependence of
the lifetimes. Note that such an averaging is not necessary
for very long lifetimes.

As T ! 0, the classical oscillation amplitudes vanish
instead of approaching the zero-point amplitudes commen-
surate with the quantum mechanical ground state. In the
real crystal, the amplitudes, anharmonic couplings, and,
therefore, lifetimes become constant. In classical MD
simulations, the amplitudes of the receiving modes and,
therefore, the anharmonic couplings go to zero and the
lifetimes become very long. We attempted to calculate the
decay of H�BC at 0 K and indeed failed to observe a decay.
The constant lifetimes observed below �40 K are zero-
point oscillation effects which cannot be reproduced in our
calculations.

The lifetime of the stretch mode of VH � HV (295 ps at
low temperatures [8,10]) is computationally challenging
with a 0.3 fs time step. Figure 5 shows the energy of the
two degenerate Si-H modes at 2092 cm�1 for over
335 000 time steps at T � 200 K. The decay is slow but
steady. An exponential fit produces �� 170 ps, reasonably
close to the experimental value at this temperature
�200 ps [8]. VH � HV has no pLVMs and its wag modes
(597 cm�1) do not couple to the 2092 cm�1 mode. Plots of
the time dependence of the energy of all the modes do not
allow the identification of specific receiving modes, be-
FIG. 4 (color online). The triangles (circles) show the calcu-
lated (measured [8]) lifetimes H�2 and H�BC.
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FIG. 5 (color online). Energy of the two degenerate Si-H
stretch modes of VH � HV vs time for about 335 000 time steps.
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cause they have very short lifetimes and begin to decay into
multiple bulk phonons as soon as their amplitude picks up.

Our calculations show that the decay of high-frequency
LVMs depends on the existence of lower-lying LVMs as
well as pLVMs in the vibrational spectra of the defect. In
the case of H�2, the first step of the decay of the Si-HBC

stretch (2126 cm�1) is controlled by the Si-HAB stretch
(1860 cm�1) plus a pLVM at 272 cm�1 which involves
oscillations of the two Si atoms bound to the Hs. In the case
of the asymmetric stretch of H�BC, a defect that has no other
LVMs, the decay is more complicated but clearly begins
with pLVMs at 209 and 410 cm�1 (associated with the two
Si neighbors of H), which themselves couple very effi-
ciently to the wag modes of H and bulk phonons. Finally,
the VH � HV defect has no LVMs or pLVMs it can couple
to. Coupling to the four wag modes, just above the �
phonon, would involve a cumbersome ‘‘3.5’’-phonon pro-
cess. The decay of the stretch mode occurs by coupling to
multiple bulk phonons, as discussed in the experimental
work, and fits on the frequency-gap law. In conclusion, our
first-principles calculations reproduce the experimental
data above �50 K and demonstrate that the entire vibra-
tional spectrum of a defect must be considered in order to
understand the vibrational lifetime of high-frequency
LVMs. This includes LVMs that are not IR active as well
as pLVMs that are rarely measurable. Theory is required
here.
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