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Stable Optical Trapping Based on Optical Binding Forces
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Various trapping configurations have been realized so far, either based on the scattering force or the
gradient force. In this Letter, we propose a new trapping regime based on the equilibrium between a
scattering force and optical binding forces only. The trap is realized from the interaction between a single
plane wave and a series of fixed small particles, and is efficient at trapping multiple free particles. The
effects are demonstrated analytically upon computing the exact scattering from a collection of cylindrical
particles and calculating the Lorentz force on each free particle via the Maxwell stress tensor.
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Since 1970, it has been known that the motion of small
dielectric particles can be controlled by laser beams [1].
The radiation pressure created by the lasers on the particles
induces a scattering force along the direction of the beam
propagation, and a gradient force along the gradient of the
field intensity. The theoretical demonstration of the exis-
tence of a gradient force on small particles was offered in
Ref. [2] using a dipole approximation in the formulation of
the Lorentz force [3]. For strong intensity gradients, it was
shown that the gradient force can become dominant, yield-
ing a negative force responsible for the trapping and stable
levitation reported in Refs.[4–6]. For weak intensity gra-
dients, it was shown that a stable trap could still be realized
by using two counter-propagating beams in order to bal-
ance the two scattering forces [7]. Developing upon this
work, multiple trapping configurations have been pro-
posed, such as Talbot trapping [8], trapping with diffractive
optics [8], trapping with a spherical lens [9], dielectropho-
resis trapping [10], and two- or three-beam trapping [11–
13] which offers the control of the size of the traps typi-
cally achieved by varying the incident angles of the three
beams. In all these cases, the particles are trapped either
because of the gradient force, or because of the balance
between the scattering forces and other external forces in
the system.

In this Letter, we propose an alternative trapping regime
based on optical binding forces, i.e., an alternative way to
induce a negative force. Unlike the known configurations
mentioned above, the present configuration can be realized
with a single plane wave. Since optical binding manifests
itself when multiple particles submitted to an incident
electromagnetic wave interact and scatter collectively, its
calculation requires us to include all the multiple interac-
tions between all the particles. Optical binding on a system
of two particles was first studied in Ref. [14] where the
particle response was assimilated to a harmonic oscillator.
Later, Ref. [15] used a discrete dipole approximation to
evaluate the binding forces from the Maxwell stress tensor
from two particles. Recently, we have proposed an exact
method to compute the optical binding between an arbi-
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trary number of cylindrical particles based on the Mie
theory and the Foldy-Lax multiple scattering equations
[16]. We use here this ability in order to optimize the
location of a series of fixed small particles and devise a
configuration where scattering and optical binding forces
can be manipulated to create a new regime of particle
trapping.

The configuration we shall use to begin is a general-
ization of the one studied in Ref. [15], where two particles
are submitted to an incident plane wave propagating in the
ŷ direction, as shown in the inset of Fig. 1(a). The forces in
the x̂ and ŷ directions (denoted Fx and Fy, respectively)
computed either using the method of Ref. [15] for circular
geometries or the one of Ref. [16] for cylindrical geome-
tries exhibit a tapered oscillatory behavior, as already
known from Ref. [15] and illustrated in Fig. 1(a) for the
typical set of experimental parameters detailed in the
caption of the figure. The oscillatory behavior of either
Fx or Fy is a direct manifestation of the optical binding
between the particles: the mean value of the force (dashed
line in the figure) corresponds to the force on a single
particle, while the amplitude of the oscillation is directly
related to the strength of the binding. The latter can be
explained upon considering N two-dimensional line scat-
terers (equivalent to infinitely thin cylinders) and writing
the corresponding Foldy-Lax multiple scattering equations
[17]. The total electric field �E� �r� � �Einc� �r� � �Escat� �r� at
location �r � x̂x� ŷy is expressed as the sum of the inci-
dent and the scattered field from the N scatterers in the
system (located at positions �r‘, ‘ 2 f1; . . . ; Ng), where
�Einc� �r� � ẑeiky is the incident field with unit amplitude and

�E scat��r� � ẑ
XN
j�1

i�fH�1�0 �kj �r� �rjj� �Eej� �rj�: (1)

The Hankel function of the first kind and zeroth order
represents the two-dimensional Green’s function and f is
the scattering amplitude of a cylinder, related to its polar-
izability which can be evaluated numerically [15,18].
�Eej��rj� is the total exciting field on particle j from all the
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FIG. 1. Force in the ŷ direction (Fy) felt by the right particle
shown in the insets as function of its position along x̂ due to a
single plane wave incidence with �E � ẑeiky at �0 � 632:8 nm.
The four subplots correspond to different arrangement of fixed
particles on the left: (a) single particle, (b) three particles align in
ŷ, (c) nine particles aligned in ŷ, (d) nine particles aligned in x̂.
All particles have a permittivity �p � 2:25�0, are embedded in a
background of �b � 1:69�0, and have a radius of 10 nm. The
closely packed particles are separated by 21 nm. The dashed
curve indicates the force on a single particle (Fy ’
4:36� 10�23 N=m). The superposed triangles have been calcu-
lated by the method shown in Ref. [21] from the fields obtained
from the commercial package CST Microwave Studio®.
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other particles including all interactions, solved from

�E e
j� �rj� � �Einc��rj� �

XN
‘�1
‘�j

i�fH�1�0 �kj �rj � �r‘j� �Eej��r‘� (2)

either iteratively or by matrix inversion. For two cylinders
positioned at �r1 and �r2 with y � 0 in both cases like shown
in the inset of Fig. 1(a), the total electric field can be
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written as

�E��r� � ẑ
�
eiky �

i�f

1� i�fH�1�0 �kj�r1 � �r2j�
�H�1�0 �kj �r� �r1j�

�H�1�0 �kj �r� �r2j��

�
: (3)

The magnetic field is directly obtained from Faraday’s law
and the force is obtained from the contour integration of
the Maxwell stress tensor [19], which has been shown to be
equivalent to the computation of the Lorentz force from
bound currents and charges [20,21]. The leading term in
the expression of the two components of the force have a
dependence of the form H�1�0 �kr�, which yields the tapered
oscillatory behavior clearly visible in Fig. 1(a). The period
of the oscillations is therefore directly related to the period
of the Hankel function (e.g., with the parameters of Fig. 1,
the Hankel function has a period of about 0:42 �m, in
agreement with the oscillations shown in Fig. 1(a) obtained
without approximations), while their amplitude is modu-
lated by the scattering amplitude f and the number of
particles.

The amplitude of the oscillations can therefore be in-
creased by either increasing the size of the particles (bear-
ing in mind that the analogy with line scatterers would
become less accurate), or by increasing the number of
particles in the system. It is the second approach that we
exploit here: increasing the number of particles in the
system increases the optical binding forces between parti-
cles, which can create a negative force. Since the number
of particles and their positions are arbitrary, the resulting
forces can be potentially modulated at will. In particular,
we first show that using a single plane wave like in
Fig. 1(a), the amplitude of the oscillation of Fy can be
enhanced to actually reach zero or even negative values,
indicating that optical binding forces can be made strong
enough to cancel or invert the scattering force due to the
incident plane wave. In order to achieve this, the proper
positions of the particles have to be determined by consid-
ering their scattering characteristics. As can be seen from
the parameters indicated in the caption of Fig. 1, the
particles are very small compared to the wavelength in
order to prevent the scattering force from dominating the
binding forces (although this property has not been used in
the calculations of the forces [16]), which indicates that
their response can be approximated by a Rayleigh radiation
from a dipole in the ẑ direction [22]. Consequently, a strong
radiation is induced in the x̂ direction, and binding phe-
nomena are expected to be enhanced if multiple dipoles
can be induced in ẑ. This can be achieved by placing
additional particles along the ŷ axis, as shown in the insets
of Figs. 1(b) and 1(c), or by aligning particles along the x̂
axis, as shown in Fig. 1(d) and its inset. Such configura-
tions could potentially be achieved using forces from
evanescent fields, as suggested in Refs. [15,23]. We prefer
the vertical configuration to the horizontal one for reasons
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we shall detail hereafter. The corresponding results show
that as the number of particles increases, the amplitude of
the oscillations of Fy increases and eventually can be such
to yield a zero or a negative Fy (these results have been
confirmed numerically by the commercial package CST
Microwave Studio®, as explained in the caption of Fig. 1).
Consequently, a system like that shown in the inset of
Fig. 1(c), where nine particles are fixed and aligned along
ŷ, can indeed cancel the scattering force due to the incident
plane wave by the sole use of optical binding forces.

We pursue by noting that the forces shown in Fig. 1 are
symmetric in x and, in the particular case of Fig. 1(c), that
the first minimum has a magnitude comparable to the first
maximum (Fy ’ �1:1� 10�22 N=m at x ’ 155 nm and
Fy ’ �1:5� 10�22 N=m at x ’ 430 nm). Hence, the lo-
cation of a second set of nine vertical particles can be
optimized such that the independent forces tend to cancel
each other by superposing their respective minima and
maxima.

In order to exactly compute the force in the new con-
figuration and optimize the location of the particles, we
define an inverse problem based on the forward equations
used in this Letter and presented in Ref. [16]. Although the
reasoning based on independent forces from the two ver-
tical sets of particles is not exact, it still gives a good initial
guess of the initial positions to be used in the optimization
scheme. The optimization is therefore run with 19 identical
particles as those of Fig. 1 [18 are fixed and one spans the
(xy) plane] and requires the magnitude of Fy to be less than
10% of the force on a solitary particle (indicated by the
dashed lines in Fig. 1) over a wide x range at y � 0. The
result of the optimization yields the force shown in Fig. 2
for two vertical arrangement of nine particles separated by
595 nm. It is seen that the force Fy (solid line in the figure)
lies within the specified constraints over about 400 nm,
which corresponds to about 67% of the range. In addition,
the force Fx (dashed line in the figure) is seen to be positive
for x 2 �100 nm; 297:5 nm� and negative for x 2
�297:5 nm; 500 nm�, with an amplitude about 2 orders of
magnitude larger than Fy. Fx therefore creates a stable
FIG. 2. Force on a free particle moving along y � 0 in the
configuration shown in the inset. Solid line: Fy � 10�24 �N=m�;
Dashed line: Fx � 10�22 �N=m�. Physical parameters are iden-
tical to those of Fig. 1.
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equilibrium around x � x0 � 297:5 nm while Fy is small
but not exactly zero. A quick inspection reveals that Fy is
null at x � x0 and y � y0 � 0:4 nm (data—not shown—
are very similar to those of Fig. 2 with Fy peaking at zero at
the same location as Fx is null). This configuration there-
fore realizes a one-dimensional trap.

Finally we verify that the trap is also two-dimensional,
located at (x0; y0), as is further confirmed in Fig. 3(a) by
computing the force field on a free particle spanning the
(xy) plane. The force distribution clearly shows an attrac-
tion toward (x0; y0) induced by the scattering and optical
binding forces in the system. The optical well thus created
can be evaluated by computing the inverse gradient of the
force, and is shown in Fig. 4. The potential energy is seen to
dip sharply at the location of the trap and is thus efficient at
trapping free particles. Figures 3 and 4 also show that as the
number of trapped particles increases (up to four in this
case), the potential well is strengthened. This is clearly
seen in Fig. 4 with an increased number of trapped parti-
cles, and is also illustrated in Figs. 3(b) and 3(c) by show-
FIG. 3. Field force on a free particle in the presence of two
vertical walls of particles separated by 595 nm and (a) no trapped
particle, (b) a single trapped particle, (c) four trapped particles,
all clustered around �x; y� � �297:5 nm; 0:4 nm�. Physical pa-
rameters are identical to those of Fig. 1. The tail of the arrows
correspond to the location of the center of the particle.
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FIG. 4. Potential energy at x’297:5 nm for y2��150;150� nm
and at y ’ 0 for x 2 �100; 500� nm, for zero up to four trapped
particles around �x0; y0� � �297:5 nm; 0:4 nm�. The energy has
been computed as the inverse gradient of the force field distri-
bution shown in Fig. 3.
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ing the force field in the (xy) plane for one and four trapped
particles (data are not shown for two and three trapped
particles as they present the same effect). In addition,
Fig. 4 indicates that the well is quasiharmonic in both
directions so that the irradiance necessary to maintain a
given trapping accuracy despite the Brownian motion
can be estimated from Refs. [24,25]. If one accepts a
standard deviation of 100 nm, which corresponds to five
particle diameters but still maintains the trapping property
of the configuration, the necessary irradiance is I0 	
0:4 �W=�m2. This irradiance is here obtained for infi-
nitely long cylinders, i.e., two-dimensional particles,
which explains the difference with the irradiance typi-
cally achieved in experimental three-dimensional con-
figurations.

The design of the new trap, based on two sets of verti-
cally arranged particles, is not restrictive to this geometry:
a proper design of dielectric diffractive elements would
achieve similar properties by molding the electromagnetic
field within a controlled region of space. Multiple traps
based on the optical binding force could therefore be
realized, as an extension of the present work.
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