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Structural Transformations and Melting in Neon Clusters: Quantum versus Classical Mechanics
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The extraordinary complexity of Lennard-Jones (LJ) clusters, which exhibit numerous structures and
‘‘phases’’ when their size or temperature is varied, presents a great challenge for accurate numerical
simulations, even without accounting for quantum effects. To study the latter, we utilize the variational
Gaussian wave packet method in conjunction with the exchange Monte Carlo sampling technique. We
show that the quantum nature of neon clusters has a substantial effect on their size-temperature ‘‘phase
diagrams,’’ particularly the critical parameters of certain structural transformations. We also give a
numerical confirmation that none of the nonicosahedral structures observed for some classical LJ clusters
are favorable in the quantum case.
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Atomic clusters exhibit very rich structural, thermody-
namic, and dynamical properties that may vary with size in
a nonmonotonic fashion. In particular, rare gas atomic
clusters, often modeled using the Lennard-Jones (LJ) pair
potential, have been very popular in the last several deca-
des. Typically, multifunnel and rough potential energy
landscapes in LJ clusters make their numerical simulations
extremely challenging, even when the quantum effects are
neglected. In the past, a number of publications addressed
the role of the latter using the path integral Monte Carlo
(PIMC) method. A particularly interesting case corre-
sponds to neon clusters (see, e.g., Refs. [1,2]). However,
for a system as small as Ne13 a well-converged heat ca-
pacity CV�T� was reported only recently [2]. Such a cal-
culation is apparently a rather difficult task. In Ref. [3] the
most recent version of a PIMC heat capacity estimator [4]
was applied to compute CV�T� for Ne38, but the conver-
gence at low temperatures was not quite satisfactory. In the
same paper, the variational Gaussian wave packet (VGW)
method was also applied to Ne38. Although manifestly
approximate, the latter method had so far demonstrated
both numerical efficiency and surprisingly high accuracy
when compared to the exact results for low dimensional
systems [5] or to accurate PIMC calculations [6].
Unfortunately, its application to a system as complex as
Ne38 also seemed quite expensive. This high cost, however,
was expected as accurate heat capacity calculations for the
classical LJ38 cluster required a numerical effort several
orders of magnitude greater than that required for LJ13 [7].
It is the relatively good convergence achieved in Ref. [3]
for Ne38 using both VGW and PIMC methods that may
seem rather surprising. Unlike its classical counterpart, due
to strong quantum effects, this system has a simple single-
funnel configuration space at low temperatures and does
not undergo structural transformations. Otherwise, much
longer Monte Carlo runs would be needed. For example,
the VGW method in its original formulation [3,5] is likely
to fail for the case of Ne39 using any reasonable computa-
tional resources.
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In this Letter, in order to improve the convergence
properties of the VGW method we implement a much
more efficient sampling scheme based on the exchange
Monte Carlo (EMC) (or parallel tempering) procedure
[8,9], rather than on a single Metropolis random walk
done at sufficiently high temperature [3,5]. The method
is applied to compute the heat capacities for Ne35–39. The
present result for Ne38 has statistical errors at least an order
of magnitude smaller than those in Ref. [3], but is achieved
with a comparable numerical effort. We also perform the
VGW analysis of the ground states of Nen for sizes up to
n � 120.

First we briefly review the properties of classical LJn
clusters. Then we contrast those with the properties of
quantum Nen clusters.

Figure 1 shows the orientational bond order parameter
Q6 [10] obtained from the global minima of LJn [11] as a
function of n. (Here, the choice for the order parameter Q6

is motivated by its high sensitivity to cluster symmetry.)
The two dominant structural types that are realized for all
but several special cases (n � 38, 75–77, 98, 102–104) are
based on either the Mackay icosahedral or anti-Mackay (or
polyicosahedral) motifs, which correspond, respectively, to
an incomplete Mackay or anti-Mackay overlayer surround-
ing a Mackay icosahedral core [12–15]. As seen in Fig. 1,
at zero temperature the Mackay to anti-Mackay (M !
aM) transitions occur at sizes 31! 30 and 82! 81.

Depending on the structure of the global minimum, a LJ
cluster may undergo one or more temperature-induced
structural transformations [7,16–19] according to the fol-
lowing general rules. Clusters with a Mackay overlayer in
the global energy minimum will, at some finite tempera-
ture, undergo a surface (melting?) transition to an anti-
Mackay overlayer, because the latter is entropically more
favorable than the former [17,19]. A complete melting of
the cluster, which we loosely define as the ‘‘core melting,’’
occurs at higher temperatures [19] but is not always easy to
characterize, especially for small two-layer clusters for
which the 13-atom core may be impossible to identify
1-1 © 2006 The American Physical Society
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FIG. 1 (color online). Orientational bond order parameter Q6

as a function of cluster size for global minima of classical LJn
clusters. The following symmetry types are identified: Mackay
icosahedral [ico�M�], anti-Mackay icosahedral [ico�aM�], Trun-
cated octahedral (Oh), decahedral (dec) and Tetrahedral (Td).
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uniquely. The left panel of Fig. 2 compares heat capacities
of LJ30 and LJ31. TheM ! aM transition in LJ31 gives rise
to a small peak in the CV�T� curve at T � 1:0 K. (Here and
throughout we assume LJ parameters for the Ne-Ne pair
potential.) The core melting transition results in a broad
maximum at T � 11:8 K. The M ! aM transitions in big-
ger clusters, as in LJ38;39 (right panel of Fig. 2), give rise to
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FIG. 2 (color online). Heat capacities for the classical (LJ) and
quantum (Ne) clusters. The broad maxima of CV�T� at T > 10 K
are presumably due to the cluster core melting. A shoulder in the
CV�T� curve at T � 4 K for LJ38 is a result of the structural
transformation from the global octahedral minimum toward the
Mackay icosahedral local minima. LJ31;39 and Ne39 at zero
temperature have the Mackay overlayer (and so does LJ38 at T >
4 K) and as such undergo the temperature-induced M ! aM
transitions at temperatures where the sharper peaks are situated.
The thermodynamic properties of LJ30 and Ne38 are similar in
that they both have anti-Mackay overlayers at T � 0 and do not
undergo any low-temperature transitions below core melting.
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peaks that are stronger and shifted to higher temperatures.
Clusters with nonicosahedral global minima undergo
global structural transformations at some low temperature
toward icosahedral local minima, because the latter are
entropically more favorable than the former [7,15,20].
Such a transition in LJ38 gives a little bump in CV�T� at
T � 4 K and is hard to identify. However, this and the other
structural transitions mentioned above are clearly charac-
terized by the distributions ��Q6; T� of the orientational
bond order parameter Q6 as a function of temperature (see
Fig. 3), which has distinct values for different symmetries
(cf. Figure 1). These plots reconfirm that the structural
transitions in finite systems are better described by coex-
istence regions [21], where, e.g., the distribution ��Q6; T�
for a specific temperature range may have a bimodal
character.

While much is now understood about classical LJ clus-
ters, less can be said about the effect that the quantum
nature of, say, rare gas clusters can have on their thermo-
dynamic properties. For argon and heavier rare gas clus-
ters, quantum effects can often be treated as small
perturbations [22]. However, neon clusters are expected
to exhibit strong quantum effects not only in the low-
temperature regime, but also in the liquid phase [1].

By using a procedure based on VGW and similar to that
of Ref. [3], we were able to estimate the ground state
energies and structures of Nen clusters for n � 105 and
n � 110, 115, 120. For the case of Ne38 the method proved
to be reliable when verified by extensive PIMC calcula-
tions. Here, for each n several long random walks with
classical canonical distributions are generated at a series of
temperatures between 5 and 9 K using a standard EMC
procedure similar to that utilized in Ref. [19]. Once in
every 1000 MC steps per temperature, the cluster configu-
ration is selected as the initial condition for propagating the
VGW in imaginary time to a high value (low temperature)
in order to obtain a stationary Gaussian state. We also
construct the stationary states from all the configurations
given in Ref. [11]. The state with the lowest energy is then
accepted as a putative ground state. Since this particular
calculation uses a more accurate version of the VGW
method, i.e., fully correlated Gaussians, that scales numeri-
cally as n3, it becomes prohibitively expensive for large
clusters. Figure 4 displays the orientational bond order
parameter Q6 computed for the ground states as a function
of n. This diagram confirms the conclusion of Ref. [22],
based on the harmonic approximation (HA), that none of
the nonicosahedral configurations (cf. Figure 1) survives
for the quantum case of Nen. However, we note that in the
Nen case, the HA gives grossly incorrect energy estimates
due to the excessive value of the quantum delocalization
parameter � � @=�

�������

m�
p

� 0:095, which can even lead to
delocalization of the ground state over several local poten-
tial energy minima [3]. In particular, most of the ground
state structures reported in Ref. [11] that are different from
the classical global minima do not actually give stationary
Gaussians with the lowest energy.
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FIG. 3 (color online). Contourplots of the distributions ��Q6; T� of the orientational bond order parameter Q6 for the classical (LJ)
and quantum (Ne) Lennard-Jones clusters.

PRL 96, 113401 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
24 MARCH 2006
The quantum effects make the anti-Mackay symmetry
more favorable than the Mackay symmetry, shifting the
corresponding transition to higher cluster sizes. In particu-
lar, it is only starting at n � 39 that the ground states of all
the double-layer Nen clusters have the Mackay symmetry
and are localized over the global minimum of the potential
energy. Figure 5 displays two- and three-layer neon clus-
ters that are representative of the two symmetry types. The
anti-Mackay overlayers are less compact and seem to have
more liquidlike character. By analogy to the classical case
[19], we expect to observe the temperature-induced M !
aM transition in clusters with Mackay overlayer, while for
anti-Mackay clusters the core melting at T � 10 K should
be the only structural transformation.
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FIG. 4 (color online). Orientational bond order parameter Q6

for the putative ground states of Nen clusters.
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In order to support our conjecture, we performed the
heat capacity calculations for Ne35–39 in the temperature
range 1 K< T < 16 K. A confining radius of Rc � 3�
was used. While for n � 38 the convergence was relatively
easy to achieve due to the lack of structural transformations
at low temperatures, the results for Ne39 were particularly
slow to converge. For this case, 14 replica temperatures Tk
distributed in the temperature range of interest gave rise to
14 random walks, which were executed in a parallel fash-
ion on a 14-processor computer cluster. During the equili-
bration run the temperature grid was adjusted to make the
exchange rate between replicas at adjacent temperatures
equal to approximately 50%. The temperature-dependent
observables for each interval between the two adjacent
replicas Tk < T < Tk�1 were evaluated by the method of
Ref. [3] utilizing the contribution from the �k� 1�th rep-
lica. The convergence was monitored by comparing aver-
ages over independent successive runs. The total number of
MC steps needed to obtain reasonably well-converged
results for Ne39 was NMC � 4� 106, where one MC step
corresponds to one accepted Gaussian wave packet in the
FIG. 5. Some Nen ground state configurations estimated by the
VGW method and representative of the two possible overlayer
symmetry types. (The core atoms are shown in dark color.)
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Metropolis random walk for the lowest temperature rep-
lica. (In the present implementation of the parallel algo-
rithm, different numbers of MC steps are completed per
unit time at different replica temperatures, the lowest tem-
perature replica being the slowest as it requires the longest
integration in imaginary time.) Obtaining even better sta-
tistical errors for Ne38 required only NMC � 1� 106. (A
more detailed description of the computational procedure
and the associated convergence issues will be reported
elsewhere.)

Heat capacities of the representative quantum Ne38;39

clusters are shown in Fig. 2 together with the correspond-
ing classical results. [We omit theCV�T� curves for Ne35–37

because they appear to be very similar to that for Ne38.]
The small peak at T � 4 K in the CV�T� curve for Ne39

indicates the existence of a structural transformation at
T � 4 K. Further evidence of this transformation can be
obtained by comparing the order parameter distribu-
tions ��Q6; T� for classical LJn clusters (Fig. 3, left panels)
with those for quantum Ne38;39 clusters (right panels).
Especially striking are the similarities between the distri-
bution patterns of LJ30-Ne38 and LJ31-Ne39, which are
naturally interpreted in terms of the temperature- or size-
induced M ! aM structural rearrangements.

In conclusion, we have investigated thermodynamic and
structural properties of quantum neon clusters using an
improved version of the recently developed VGW method.
Analysis of the estimated ground state structures of Nen
clusters in the size range n < 120 allowed us to provide a
numerical justification of the previously conjectured fact
[22] that nonicosahedral structures are thermodynamically
unstable. We also identified the critical sizes for the M !
aM transition for Nen clusters.

Furthermore, the new sampling procedure based on the
exchange Monte Carlo algorithm allowed us to obtain
reasonably well-converged results for Ne39, which displays
qualitatively different and more complex behavior than
Ne38. Particularly, we have shown that, besides the core
melting transition, Ne39 undergoes a temperature-induced
M ! aM surface structural transformation.

Although manifestly approximate, our results are practi-
cally accurate and constitute an important step forward in
both constructing and understanding the ‘‘phase’’ diagram
of atomic clusters. Unfortunately, an experimental confir-
mation of our findings appears currently impossible due to
the technical challenges associated with measurements on
neutral rare gas clusters. We note, though, that indications
of surface melting effects have been observed in recent
experiments on ionized aluminum clusters [23].

Finally, our method is not intended to replace the well
established PIMC approach, which is truly a first-
principles approach. Rather, we aim to provide a comple-
mentary tool for quantum statistical mechanics calcula-
tions of many-body systems.
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