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Hindrance of Heavy-Ion Fusion due to Nuclear Incompressibility
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We propose a new mechanism to explain the unexpected steep falloff of fusion cross sections at
energies far below the Coulomb barrier. The saturation properties of nuclear matter are causing a
hindrance to large overlap of the reacting nuclei and consequently a sensitive change of the nuclear
potential inside the barrier. We report in this Letter a good agreement with the data of coupled-channels
calculation for the 64Ni� 64Ni combination using the double-folding potential with Michigan-3-Yukawa-
Reid effective N � N forces supplemented with a repulsive core that reproduces the nuclear incompres-
sibility for total overlap.
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In recent years a new phenomenon observed in the
fusion of several medium-heavy dinuclear systems [1–5]
has presented a challenge to the theoretical understanding
of the reaction mechanism at deep sub-barrier energies.
From the inspection of capture cross sections for various
combinations of colliding systems such as 58Ni� 58Ni,
64Ni� 64Ni, 60Ni� 89Y, 64Ni� 100Mo, 90Zr� 90Zr,
90Zr� 89Y, and 90Zr� 92Zr, an unexpected hindrance
was observed at sub-barrier bombarding energies below a
certain threshold Es that varies from system to system. The
authors of Ref. [5] remarked that the exploration of the
hindrance phenomenon is only in its initial stage and an
identification of the underlying physical cause is still miss-
ing. The standard theoretical approach to treat capture
reactions, i.e., the quantum tunneling through the relative
barrier of the dinuclear system coupled to different low-
lying collective degrees of freedom (vibrations and rota-
tions) was unable to explain the steep falloff in the cross
sections. The coupled-channels (c.c.) approach failed to
describe the dynamics of the fusion process below a certain
value of the bombarding energy. The source of this phe-
nomenon is not only interesting for the understanding of
the reaction mechanism but may have essential consequen-
ces for nuclear reactions that occur in stars [5]. It could
imply that the synthesis of heavy elements is hindered
below a certain energy threshold.

To resolve the enigma several hypotheses have been
proposed. An issue debated by several authors was the
large diffuseness needed to fit high-precision fusion data
[6,7]. A suggestion that is very close in spirit to the pres-
ent work was put forward in [8]. The authors made the
observation that potentials such as the Winther-Akyüz [9]
provide reliable barriers but the fact that they cannot
reproduce the data far below the barrier is a signature
that the ion-ion potential has another form in the inner
part of the barrier. Using simple arguments (no channel
coupling, WKB calculation of the transmission coeffi-
cient) they pointed out that the steep falloff in the tun-
neling probability is related to the disappearance of the
classically allowed region below a certain energy. If this
is true, it would mean that we are confronted with the
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existence of a shallow pocket of the potential inside the
barrier.

Another interesting observation [2] made in relation to
the data was that the astrophysical S factor, as defined by
Burbidge et al. [10], develops a maximum for the systems
enumerated above, which, again, cannot be reproduced by
c.c. calculations using the deep Winther-Akyüz potential.
For the systems mentioned earlier the maximum occurs at
an energy 20–30 MeV above the compound nucleus
ground state.

We advocate in this work the idea that in order to
analyze the fusion data the double-folding potentials may
avoid the systematic failure of other potentials. To reach
this goal we have to make some amendments to the
schemes that are usually employed; see, for example,
Ref. [11]. First of all, we need to take into account the
saturation of the nuclear matter. Second, the neutron and
proton content of the various dinuclear combinations have
to be included in the potential, a fact which is often over-
looked or only indirectly accounted for in the Woods-
Saxon parametrization. We show that by properly address-
ing these issues light can be shed on the hindrance in sub-
barrier fusion.

There are several facts pointing toward the existence of
shallow pockets in the relative heavy-ion potential used to
describe various nuclear reactions. The first evidence came
from the discovery of resonant structures in collisions of
light nuclei, the best known example being the sharp peaks
in the bombarding energy dependence of the excitation
curves measured in the 12C� 12C scattering by Bromley
et al. [12]. These resonances would then resemble states in
a quasimolecular potential well.

It became clear in the last two decades that the resonant
behavior observed not only in 12C� 12C but also in 12C�
16O, 12C� 13C, 16O� 16O, 16O� 24Mg, is not an isolated
phenomenon occurring only in a few lighter systems. It
persists even in heavier colliding systems, such as the
24Mg� 24Mg [13] and 28Si� 28Si [14]. Manifestation of
clusterization in relation to quasimolecular pockets is also
known for various heavy nuclear systems such as cluster
radioactivity [15], or cold fission of actinides [16].
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To simulate the appearance of shallow pockets several
recipes have been proposed in the past: (a) a Gaussian
added to the conventional Woods-Saxon potential was
used in Refs. [17,18] in order to fit the reaction cross sec-
tions observed in 12C� 12C, 12C� 16O, and 16O� 16O;
(b) potentials computed within the density functional
method [19,20], and (c) the well-known proximity poten-
tial [see Ref. [21] for the 1977 and [22] for the 2000
versions].

A repulsive core can be also simulated by folding two
nuclear density distributions with an effective nucleon-
nucleon (N � N) interaction. Double-folding potentials,
without repulsive cores, introduced by Satchler and Love
[23], are accurate only in the tail region of the nucleus-
nucleus potential where the density distributions are only
gently overlapping and thus the assumption of ’’frozen
density’’ is less questionable. However, this assumption
ignores any readjustment due to the mutual excitations of
the nuclei or the Pauli exclusion principle for strong over-
lap. Density dependent interactions have been used in
recent times to simulate the saturation of nuclear matter
for �� nucleus scattering [see Ref. [24] and references
therein]. For the target-projectile combinations used in the
experiments with the ATLAS facility at Argonne [1–4]
these double-folding potentials do not necessarily apply
because the resulting pockets are still too deep and the
barriers too thin below a certain energy. For these reasons
another approach is considered to incorporate the effect of
the nuclear incompressibility.

Since we are interested in performing dynamical calcu-
lations we consider two heavy ions with one-body de-
formed densities �1 and �2, subjected to vibrational
fluctuations, and center of masses separated by the distance
R. Then the interaction between these two ions can be
evaluated as the double-folding integral of these densities

V�R� �
Z
dr1

Z
dr2�1�r1��2�r2�v�r12; �1; �2�; (1)

where r12 � R� r2 � r1. In the above formula there is
allowance for a density dependence of v as discussed
previously. The central part of the effective N � N poten-
tial v contains a direct part that also depends on isospin
since in all the cases of interest N � Z, and an exchange
part that takes into account the effect of antisymmetriza-
tion under exchange of nucleons between the two nuclei.
For the density independent part of the effective nucleon-
nucleon force we use the Michigan-3-Yukawa(M3Y)-Reid
parametrization [24–26]. To compute the double-folding
potential we use the Fourier technique as expounded in a
previous publication [25].

The density independent M3Y interactions are correctly
predicting the potential for peripheral collisions. However,
reactions sensitive to the potential at smaller distances are
not reproduced [24]. To cure this deficiency the ion-ion
potential should also contain a repulsive core. For the
repulsive part we take a double-folding integral as in
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Eq. (1) but use densities with smaller diffusivity (a �
0:4) and the N � N interaction is modeled by a zero-range
form with strength Vcore, following the suggestion of
Ref. [27]. In what follows we refer to the used potential
(including the Coulomb part that is also calculated via the
double-folding procedure) as the M3Y� repulsion.

To derive the properties of the short-range repulsive
core, we note that an overlapping region with doubled
nucleon density is formed once the distance R between
the nuclei becomes less than Rp � Rt, where Rp and Rt are
the nuclear radii along the collision axis. The doubling of
the density increases the energy of the nucleons in the
overlapping region. In the case of complete overlap (for
R � 0) the increase of the interaction energy per nucleon
is, up to quadratic terms in the normal density,
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where in the last equality we use the proportionality of the
incompressibility K of normal nuclear matter to the curva-
ture of the energy per nucleon [28]. Since K is usually not
measured directly but deduced from isoscalar giant mono-
pole or dipole resonances, and since there are conflicting
results coming from the cross sections of the corresponding
experimental data [see [29] and references therein] we use
instead of a universal value the predictions of the Thomas-
Fermi model [30] as a function of the relative neutron
excess � � ��n � �p�=� of the compound (fused) nucleus.
Eventually the strength of the repulsive core, Vcore, is
determined by assuming that �V must be identified with
the value of the heavy-ion interaction potential at the
coordinate origin R � 0.

The parameters of the Fermi-Dirac density distribution
entering in the double-folding potential (1) are calculated
as follows: for the proton density distribution we use the
parameters resulting from a compilation of elastic elec-
tron scattering data [31], i.e., r0p � 1:065 fm and ap �
0:575 fm. For the neutron distribution we took the liberty
to vary the parameters under reasonable limits, taking into
account the following constraints: (a) we deal with a
moderately neutron rich nucleus and (b) the barrier of the
M3Y� repulsion potential should be close to the one
predicted by the Winther-Akyüz potential, since this po-
tential gives a good description of the data in the barrier
and high-energy region [3]. Thence we take r0n �
1:085 fm and an � 0:534 fm. To obtain the incompressi-
bility of K � 228 MeV, predicted by the Thomas-Fermi
model for the compound nucleus 128Ba [30], we use a
strength of Vcore � 496 MeV, and a diffuseness of the
repulsive part of the density distribution of a � 0:4 fm
for both protons and neutrons.

To illustrate the shape of this potential for a case of
interest we compare in Fig. 1 the spherical heavy-ion
potential for the symmetric dinuclear system 64Ni� 64Ni
to different potentials that have been used in the past to
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FIG. 2 (color online). Experimental fusion excitation function
for the system 64Ni� 64Ni [3] is compared to various calcula-
tions described in the text.
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FIG. 3 (color online). The experimental S factor of 64Ni�
64Ni [3] (solid points) is compared to the coupled-channels
calculations performed with the M3Y� repulsion (solid curve)
and the Winther-Akyüz (dashed curve) potential.
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FIG. 1 (color online). Various spherical ion-ion potentials for
64Ni� 64Ni. The solid curve is the potential employed in the
present work. The curve with small dashes is the Winther-Akyüz
potential used in [1–5]. The dashed strip corresponds to experi-
mental boundaries of the threshold energy Es.
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explain fusion data [Winther-Akyüz [9] ] or fusion barriers
[Proximity ’77 [21] ]. The thickness of the dashed region in
Fig. 1 reflects the uncertainty in the energy Es, where the
experimental S factor has a maximum.

As a study case we consider the system 64Ni� 64Ni and
treat the fusion dynamics within the c.c. method with linear
and quadratic couplings in the quadrupole and octupole
vibrational amplitudes [32]. The c.c. equations, which
include couplings to the low-lying 2� and 3� states, mu-
tual excitations, and two-phonon quadrupole excitations,
are solved in the rotating frame approximation with the
usual outgoing-wave boundary conditions at large dis-
tances. Ingoing-wave boundary conditions are imposed at
the radial separation where the heavy-ion potential devel-
ops a local minimum, Vmin � 85 MeV. As a result of this
scheme, the calculated cross section will vanish for center-
of-mass energies E � Vmin. Naturally one would expect a
nonzero cross section even below Vmin, since the com-
pound nucleus can in principle be formed down to a
threshold energy of E � 49 MeV.

In Fig. 2 the experimental excitation function of the
fusion reaction 64Ni� 64Ni! 128Ba is compared with
the results using the Winther-Akyüz potential as in
Ref. [3] (dotted line) and with the M3Y� repulsion po-
tential (solid line), in both cases using the same recipe for
the c.c. calculations. The cross section for no couplings is
also shown (dashed curve) when the Winther-Akyüz po-
tential is used. It is seen in Fig. 2 that the agreement with
the data, when using the M3Y� repulsion potential, is
much better than the one provided by the Winther-Akyüz
potential. The ‘‘M3Y� repulsion’’ excitation function has
the right shape, not only because the potential attains a
higher-lying minimum but also because the curvature of
the barrier is different, producing a thicker classically
forbidden region. Taking all the experimental data points
into account we obtain a minimum �2 per point of �2=N �
10:1 for an overall energy shift �E � 0:9 MeV of the
11270
calculated cross sections when the Winther-Akyüz poten-
tial is used. For the M3Y� repulsion we get a much better
result with a minimum �2=N � 0:86 for an energy shift of
�E � 0:16 MeV.

The S-factor representation of the 64Ni� 64Ni data
(solid points) is compared in Fig. 3 with the two c.c.
calculations, based on the M3Y� repulsion potential
(solid curve) and the Winther-Akyüz potential (dashed
curve). The clear maximum in the S factor is reproduced
only by the M3Y� repulsion potential. At this point one
should recall the experience gained in the sixties on mo-
lecular resonances. As shown in [33] the S factor exhibits a
sequence of quasimolecular resonances for lighter systems.
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In the present case we get a maximum that is too broad to
be assigned to a resonance, the curvature in the S factor
being explained by the shallow pocket in the potential. The
maximum of the theoretical curve corresponds approxi-
mately to the maximum of the data points.

A similar study was performed on another case, 58Ni�
58Ni, for which data are available from an older experiment
with the smallest cross sections in the range of mb [34].
Even in this case we confirm the trend of the excitation
functions, namely, a faster decrease than expected due to
the existence of a repulsive core.

Thus, the understanding of the experimental data, at
least for the case 64Ni� 64Ni, requires a modified shape
of the potential inside the barrier. Both a thicker barrier and
a shallower pocket are needed to explain the measured
cross sections and these features are naturally explained
by the M3Y� repulsion heavy-ion potential. If the actual
potential pocket would be deeper than the potential used by
us, e.g., the double-folding with density dependent M3Y
interactions [24], then one would expect within the energy
range between the barrier top and the threshold energy Es
the appearance of a resonant structure of the form encoun-
tered for lighter quasimolecular systems [33]. Apparently
there is no indication of resonant structures in the excita-
tion functions of 64Ni� 64Ni or in the other systems
studied in Refs. [1–5].
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