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Gravitational-Wave Extraction from an Inspiraling Configuration of Merging Black Holes
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We present new ideas for evolving black holes through a computational grid without excision, which
enable accurate and stable evolutions of binary black hole systems with the accurate determination of
gravitational waveforms directly from the wave zone region. Rather than excising the black hole interiors,
our approach follows the ‘‘puncture’’ treatment of black holes, but utilizing a new gauge condition which
allows the black holes to move successfully through the computational domain. We apply these techniques
to an inspiraling binary, modeling the radiation generated during the final plunge and ringdown. We
demonstrate convergence of the waveforms and good conservation of mass-energy, with just over 3% of
the system’s mass converted to gravitational radiation.
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Coalescing comparable mass black hole binaries are
prodigious sources of gravitational waves. The final
merger of these systems will produce an intense burst of
gravitational radiation and is expected to be among the
strongest sources for ground-based gravitational-wave de-
tectors, which will observe the mergers of stellar-mass and
intermediate-mass black hole binaries, and the space-based
Laser Interferometer Space Antenna (LISA), which will
detect mergers of massive black hole binaries. With the
first-generation Laser Interferometer Gravitational-Wave
Observatory now in a year-long science data-taking run
and LISA moving forward through the formulation phase,
the need for accurate merger waveforms has become
urgent.

Such waveforms can be obtained only through 3D nu-
merical relativity simulations of the full Einstein equa-
tions. While this has proven to be a very challenging
undertaking, new developments allow an optimistic out-
look. Full 3D evolutions of binary black holes, in which
regions within the horizons have been excised from the
computational grid, have recently been carried out. Using
corotating coordinates, so that the holes remain fixed on
the grid as the system evolves, a binary has been evolved
through a little more than a full orbit [1] as well as through
a plunge, merger, and ringdown [2], though without being
able to extract gravitational waveforms. More recently, a
simulation in which excised black holes (arising from the
collapse of an unstable scalar field configuration) move
through the grid in a single plunge orbit, merger, and
ringdown has been accomplished, with the calculation of
a waveform [3].

In this Letter, we present new ideas which allow the
black holes to move through the coordinate grid without
the need for excision [4]. We also report the results of new
simulations of inspiraling binary black holes through
merger and ringdown, carried out using these new tech-
niques. With fixed mesh refinement, we are able to re-
solve both the dynamical region where the black holes
06=96(11)=111102(4)$23.00 11110
inspiral (with length scales �M, where M is the total
system mass, and we set c � G � 1) and the outer regions
where the gravitational waves propagate [length scales
��10–100�M]. Using an outer boundary at 128M, we
evolve the system stably to well beyond t � 100M, extract
gravitational waveforms, and demonstrate that they are
2nd-order convergent.

We start by setting up data for equal mass binary black
holes represented as ‘‘punctures’’ [5]. The metric on the
initial spacelike slice takes the form gij �  4�ij, where
i; j � 1; 2; 3, and the conformal factor  �  BL � u. The
static, singular part of the conformal factor has the form
 BL � 1�

P2
n�1 mn=2j ~r� ~rnj, where the nth black hole

has mass mn and is located at ~rn. The nonsingular function
u is obtained by solving the Hamiltonian constraint equa-
tion using AMRMG [6]. We use parameters so that the black
holes have proper separation 4:99M, and the system has
total mass M � 1:008 and angular momentum J �
0:779M2. This corresponds to the run QC0 studied in
Ref. [7].

In the traditional puncture implementation,  BL is fac-
tored out and handled analytically; only the regular parts of
the metric are evolved. In this case, the punctures remain
fixed on the grid while the binary evolves. However, the
stretching of the coordinate system that ensues is problem-
atic. First, as the physical distance between the black holes
shrinks, certain components of the metric must approach
zero, causing other quantities to grow uncontrollably.
Second, a corotating coordinate frame (implemented by
an appropriate angular shift vector) is necessary to keep the
orbiting punctures fixed on the grid; this causes extremely
superluminal coordinate speeds at large distances from the
black holes and, in the case of a Cartesian grid, incoming
noise from the outer boundary.

Our approach is to allow the punctures to move freely
through the grid, by not factoring out the singular part of
the conformal factor but rather evolving it inseparably
from the regular part. Initially, we follow the standard
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FIG. 1 (color online). Hamiltonian constraint error CH at two
times, t � 11M and t � 24M, when a puncture is near to cross-
ing the positive x axis. Two resolutions are shown, hf � M=24
and M=32, and the data are scaled such that the lines represent-
ing the different resolutions should superpose in the case of
perfect 2nd-order convergence. The inset shows that CH is well-
behaved in the region near the punctures. The horizontal lines
indicate the approximate location of the apparent horizons; at the
later time, a common horizon has formed.
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FIG. 2 (color online). The positions of the apparent horizons at
times t � 0, 5, 10, 15, and 20M for our M=16 run. The curve
shows the trajectories of centroids of the individual apparent
horizons.
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puncture technique and set up the binary so that the centers
of the black holes are not located at a grid point. Taking
numerical derivatives of  BL effectively regularizes the
puncture singularity using the smoothing inherent in the
finite differences. These regularized data are then evolved
numerically. Since the centers of the black holes remain in
the z � 0 plane, they do not pass through grid points in our
cell-centered implementation.

We evolve this data with the HAHNDOL code, which uses
a relatively standard conformal formulation of Einstein’s
evolution equations on a cell-centered numerical grid [8]
with a box-in-box resolution structure implemented via
PARAMESH [9]. The innermost refinement region is a cube
stretching from�2M to 2M in all three dimensions and has
the finest resolution hf. The punctures are placed within
this region on the y axis in the z � 0 plane; we impose
equatorial symmetry throughout. We performed three
simulations with identical grid structures but with uni-
formly differing resolutions. In the most refined cubical
region, the resolutions were hf � M=16, M=24, and
M=32. Subsequent boxes of doubled size have half the
resolution; we use 8 boxes in all. Outgoing wave boundary
conditions are applied at the outer boundary, which is
located at 128M and causally disconnected from the
wave extraction region through most of the run. We use
4th-order finite differencing for the spatial derivatives ex-
cept for the advection of the shift, which is performed with
2nd-order, mesh-adapted differencing [10], and we use
2nd-order time stepping via a three-step iterative Crank-
Nicholson scheme. The highest resolution run ran for
�40 hours on 256 processors of an SGI Altix 3000
machine.

In our new approach, the free evolution of punctures is
made possible by a modified version of a common coor-
dinate condition known as the Gamma-freezing shift vec-
tor, which drives the coordinates towards quiescence as the
merged remnant black hole also becomes physically qui-
escent. Our modified version retains this ‘‘freezing’’ prop-
erty yet is suitable for motile punctures. Specifically, we
use @t�i �

3
4�B

i and @tBi � @t~�
i � �j@j~�

i � �Bi, which
incorporates two critical changes to the standard Gamma-
freezing condition. A factor  BL of the conformal factor,
originally used to ensure that the shift vanishes at the
puncture, has been removed in order to allow the punctures
to move. Also, a new term has been added (��j@j~�

i),
which facilitates more stable and accurate evolution of
moving punctures by eliminating a zero-speed mode
(which was otherwise found to create a ‘‘puncture mem-
ory’’ effect as errors grew in place [11]). Along with this
shift condition, we use the standard singularity-avoiding,
1� log slicing condition on the lapse.

Figure 1 shows the error in the Hamiltonian constraint
CH at two different times. The peak violation near the
puntures does not leak out, or grow with time, but stays
well-confined even though the punctures and horizons
11110
move across the grid. Overall, we get 2nd-order conver-
gence away from the horizons to well beyond the wave
extraction region for the entire course of the run. There is
no indication of exponentially growing constraint viola-
tions, which have plagued many numerical simulations
with black holes fixed in place on the numerical grid.

One way to get a picture of the motion of the black holes
is to look at the location of the black hole apparent horizons
at different times. Figure 2 shows the locations of a se-
quence of apparent horizons (calculated using the
AHFINDERDIRECT code [12]) where they cross the x-y plane
for our hf � M=16 run. In the coordinates of our simula-
tion, the black holes undergo about one-half orbit before
forming a common horizon.
2-2
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FIG. 3 (color online). Real part of r�4 extracted from the
numerical simulation on spheres of radii rEX � 20M and 40M
for the medium and high resolution runs. The waveforms ex-
tracted at different radii have been rescaled by 1=rEX and shifted
in time to account for the wave propagation time between the
extraction spheres. At high resolution (hf � M=32), there is no
discernible dependence on extraction radius. For comparison, we
show Lazarus waveforms from Ref. [7].
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FIG. 4 (color online). Differences of the real part of r�4 for
resolutions of hf � M=16, M=24, and M=32 appropriately
scaled such that, for perfect 2nd-order convergence, the lines
would lay on top of each other.
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FIG. 5 (color online). Conservation of mass-energy for the
highest resolution case, hf � M=32. We compare the ADM
mass MADM with the mass remaining M� E, after gravitational
radiation energy loss E. The good agreement, based on extrac-
tion spheres at rEX � 40 and 50M, indicates conservation of
energy in the simulation.
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We extract the gravitational waves generated by the
merger using the technique explained in detail in
Ref. [13]. Figure 3 shows the dominant l � 2, m � 2
components of the Weyl curvature scalar �4 extracted at
two different radii from the medium and high resolution
runs. For each resolution, the time-shifted and rescaled
waveforms computed at different extraction radii are
nearly indistinguishable, indicating that the waves travel
cleanly across refinement boundaries and have the ex-
pected 1=r falloff. In addition, the two highest resolution
waveforms differ only by a slight phase shift and a by few
percent in amplitude. For comparison, we have also in-
cluded the QC0 Lazarus waveforms from Sec. V of
Ref. [7]. These were extracted by approximately matching
the later portion of brief numerical simulations onto a
perturbed black hole [14,15] at transition time 10M.

Figure 4 shows the convergence of the extracted waves
throughout the run. The difference between the two highest
resolutions is roughly 90� out of phase with the waveform,
corresponding to a small phase shift in the waveform,
possibly caused by a small difference in the orbital
trajectories.

The gravitational waveforms also contain physical in-
formation about the radiation, including the energy E and
angular momentum J carried away by the radiation. We
calculate dE=dt and dJ=dt from time integrals of all l � 2
waveform components using Eqs. (5.1) and (5.2) in
Ref. [7]. Integrating dE=dt gives the energy loss as a
function of time; this should be the same as M�MADM,
where MADM is the Arnowitt-Deser-Misner (ADM) mass
extracted on a sphere of sufficiently large radius [16].
Figure 5 shows a comparison between M� E and an
11110
independent calculation of MADM at two extraction radii
rEX � 40 and 50M. The striking consistency between the
two calculations as the radiation passes indicates good
energy conservation in the simulation. Shortly before the
arrival of the radiation, the ADM mass measurement is
affected by a transient nonphysical pulse in the gauge
evolution, though the pulse does not affect the radiation
measurement.

The total radiated energy calculated from the waveforms
extracted at rEX � 20, 30, 40, and 50M in the highest
resolution run has the values E=M � 0:0304, 0.0312,
0.0317, and 0.0319, respectively. While these values vary
significantly with rEX (even extracting at these relatively
large radii), they are neatly consistent with a 1=rEX falloff
2-3



TABLE I. The radiated energy E and angular momentum J
carried away by gravitational radiation in our simulations.

M=16 M=24 M=32 Lazarus AEI

E=M 0.0516 0.0342 0.0330 0.025 0.030
J=M2 0.208 0.140 0.138 0.10 0.17
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to an asymptotic value of 0.0330 with an uncertainty in the
extrapolation of<1%. In Table I, we give the total radiated
energies and angular momenta extrapolated as rEX ! 1.

For comparison, we also include the Lazarus values, as
well as values from the Albert Einstein Institute (AEI)
group [2], which did not determine waveforms but esti-
mated the radiative losses based on the state of the final
black hole horizon in runs including the QC0 case. Our
lowest resolution run clearly overestimates the radiation
energy and angular momentum, while our higher resolu-
tion results are in closer agreement with the AEI value for
the energy and close to the 20% level of confidence sug-
gested in Ref. [7].

In conclusion, we present new ideas which allow punc-
ture black holes to move through a grid without excision.
Using a new gauge condition, we evolve an equal mass
binary accurately and stably, from the initial inspiral orbit
through merger and ringdown, and calculate the gravita-
tional radiation waveform directly. The simulations con-
verge with increasing resolution to 2nd order, leading to a
2nd-order convergence of the waveform. These waveforms
have the correct 1=r falloff and agree to a great extent with
approximately calculated ones. Our simulations show good
energy conservation as indicated by comparing the change
in ADM mass with the radiated energy. In this brief burst of
gravitational radiation, we find that just over 3% of the
system’s initial mass-energy is carried away in gravita-
tional waves.

This new gauge allows simulations to remain accurate
far longer than previous standard puncture techniques.
Since these new ideas have been developed within an
overall numerical approach that is closely related to widely
used numerical relativity techniques, they can be readily
adopted by other groups using codes based on traditional
conformal formulations of the Einstein equations. We plan
to apply these techniques, using adaptive mesh refinement,
to study binaries beginning from larger initial separation
and different black hole initial configurations, which are
expected to provide more realistic models corresponding to
astrophysical systems. We will also study the effects of
11110
unequal black hole masses and the individual black hole
spins.
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