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Detecting Topological Order in a Ground State Wave Function
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A large class of topological orders can be understood and classified using the string-net condensation
picture. These topological orders can be characterized by a set of data �N; di; F

ijk
lmn; �ijk�. We describe a

way to detect this kind of topological order using only the ground state wave function. The method
involves computing a quantity called the ‘‘topological entropy’’ which directly measures the total
quantum dimension D �
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FIG. 1 (color online). One can detect topological order in a
state � by computing the entanglement entropies S1; S2; S3; S4

of the above four regions, A1; A2; A3; A4. Here the four regions
are drawn in the case of the honeycomb lattice. Note that these
regions have been carefully designed so that A1 differs from A2

in the same way that A3 differs from A4.
Introduction.—Until recently, the only known physical
characterizations of topological order [1] involved proper-
ties of the Hamiltonian—e.g., quasiparticle statistics [2],
ground state degeneracy [3,4], and edge excitations [1]. In
this Letter, we demonstrate that topological order is mani-
fest not only in these dynamical properties but also in the
basic entanglement of the ground state wave function. We
hope that this characterization of topological order can be
used as a theoretical tool to classify trial wave functions—
such as resonating dimer wave functions [5], Gutzwiller
projected states [6], or quantum loop gas wave functions
[7]. In addition, it may be useful as a numerical test for
topological order. Finally, it demonstrates definitively that
topological order is a property of a wave function, not a
Hamiltonian.

Main Result.—We focus on the �2� 1�-dimensional
case (though the result can be generalized to any dimen-
sion). Let � be an arbitrary wave function for some two-
dimensional lattice model. For any subset A of the lattice,
one can compute the associated quantum entanglement
entropy SA [8]. The main result of this Letter is that one
can determine the ‘‘total quantum dimension’’ D of � by
computing the entanglement entropy SA of particular re-
gions A in the plane. Normal states have D � 1 while
topologically ordered states have D> 1. Thus, this result
provides a way to distinguish topologically ordered states
from normal states, using only the wave function.

More specifically, consider the four regions
A1; A2; A3; A4 drawn in Fig. 1. Let the corresponding von
Neumann entanglement entropies be S1; S2; S3; S4.
Consider the linear combination �S1 � S2� � �S3 � S4�,
computed in the limit of large, thick annuli, R; r! 1.
The main result of this Letter is that

�S1 � S2� � �S3 � S4� � � log�D2�; (1)

where D is the total quantum dimension of the topologi-
cal order associated with �. Here, D �

P
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2
i [9] for a

topological order described by a string-net condensate
�N; di; F

ijk
lmn; �ijk�. In the case of discrete gauge theories,

D is simply the number of elements in the gauge group.
We call the quantity �S1 � S2� � �S3 � S4� the ‘‘topo-

logical entropy,’’ �Stop, since it measures the entropy
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associated with the topological entanglement in �. The
above result implies that Stop is universal: it only depends
on the type of topological order encoded in �.

Physical picture.—The idea behind (1) is that topologi-
cally ordered states contain nonlocal entanglement.
Consider, for example, the spin-1=2 model in [11] with
spins located on the links i of the honeycomb lattice and
with a Hamiltonian realizing a Z2 lattice gauge theory. The
ground state � is known exactly. The easiest way to
describe � is in terms of strings [12]. One can think of
each spin state as a string state, where a �xi � �1 spin
corresponds to a link occupied by a string and a �xi � 1
spin corresponds to an empty link. In this language, � is
simple: ��X� � 1 for string states X where the strings
form closed loops, and � vanishes otherwise.

All local correlations h�xi�
x
ji vanish for this state.

However, � contains nonlocal correlations. To see this,
imagine drawing a curve C in the plane (see Fig. 2). There
is a nonlocal correlation between the spins on the links
crossing this curve: hW�C�i � h

Q
i2C�

x
i i � 1. This corre-

lation originates from the fact that the number of strings
crossing the curve is always even. Similar correlations
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FIG. 3 (color online). A simply connected region R in the
honeycomb lattice. We split the sites on the boundary links
into two sites labeled im and jm, where m � 1; . . . ; n.
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FIG. 2 (color online). The state � contains nonlocal correla-
tions originating from the fact that strings always cross a curve C
an even number of times. These correlations can be measured by
a string operator W�C� (blue curve). For more general states, a
fattened string operator Wfat�C� (blue region) is necessary.
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exist for more general states that contain virtual string-
breaking fluctuations. In the general case, the nonlocal
correlations can be captured by ‘‘fattened string operators’’
Wfat�C� that act on spins within some distance l of C where
l is the length scale for string breaking.

To determine whether a state is topologically ordered,
one has to determine whether the state contains such non-
local correlations or entanglement. While it is difficult to
find the explicit form of the fattened string operators Wfat

[13], one can establish their existence or nonexistence
using quantum information theory. The idea is that if the
string operators exist, then the entropy of an annular region
(such as A1 in Fig. 1) will be lower than one would expect
based on local correlations.

The combination �S1 � S2� � �S3 � S4� measures ex-
actly this anomalous entropy. To see this, notice that �S1 �
S2� is the amount of additional entropy associated with
closing the region A2 at the top. Similarly, �S3 � S4� is the
amount of additional entropy associated with closing the
region A4 at the top. If � has only local correlations with
correlation length � then these two quantities are the same
up to corrections of order O�e�R=��, since A2; A4 only
differ by the region at the bottom. For such states,
limR!1�S1 � S2� � �S3 � S4� � 0. Thus, a nonzero value
for Stop signals the presence of nonlocal correlations and
topological order.

The universality of Stop can also be understood from this
picture. Small deformations of � will typically modify the
form of the string operators Wfat and change their width l.
However, as long as l remains finite, �S1 � S2� � �S3 � S4�
will converge to the same value when the width r of the
annular region is larger than l.

A simple example.—Let us compute the topological
entropy of the ground state � of the Z2 model and confirm
(1) in this case. We will first compute the entanglement
entropy SR for an arbitrary region R. To make the boundary
more symmetric, we split the sites on the boundary links
into two sites (see Fig. 3). The wave function � generalizes
to the new lattice in the natural way.

We will decompose � into � �
P
l�

in
l �out

l where �in
l

are wave functions of spins inside R, �out
l are wave func-

tions of spins outside R, and l is a dummy index. A simple
decomposition can be obtained using the string picture. For
11040
any q1; . . . ; qn, with qm � 0; 1, and
P
mqm even, we can

define a wave function �in
q1;...;qn on the spins inside of R:

�in
q1;...;qn�X� � 1 if (a) the strings in X form closed loops

and (b) X satisfies the boundary condition that there is a
string on im if qm � 1, and no string if qm � 0. Similarly,
we can define a set of wave functions �out

r1...;rn on the spins
outside of R.

If we glue �in and �out together—setting qm � rm for
all m—the result is �. Formally, this means that

� �
X

q1�����ql even

�in
q1;...;qn�

out
q1...;qn : (2)

It is not hard to see that the functions
f�in

q1;...;qn :
P
mqmeveng, and f�out

r1...;rn :
P
mrmeveng are or-

thonormal. Therefore, the density matrix for the region R
is an equal weight mixture of all the f�in

q1...;qn :
P
mqmeveng.

There are 2n�1 such states. The entropy is therefore SR �
�n� 1� log2 [8].

This formula applies to simply connected regions like
the one in Fig. 3. The same argument can be applied to
general regions R and leads to SR � �n� j� log2, where n
is the number of spins along @R, and j is the number of
disconnected boundary curves in @R.

We are now ready to calculate the topological entropy
associated with �. According to (1) we need to calculate
the entropy of the four regions shown in Fig. 1. From SR �
�n� j� log 2, we find S1��n1�2� log 2, S2 � �n2 � 1��
log 2, S3 � �n3 � 1� log 2, and S4 � �n4 � 2� log 2,
where n1; n2; n3; n4 are the number of spins along the
boundaries of the four regions. The topological entropy is
therefore �Stop � �n1 � n2 � n3 � n4 � 2� log 2. But the
four regions are chosen such that �n1 � n2� � �n3 � n4�.
Thus the size dependent factor cancels out and �Stop �

�2 log 2 � � log�22�. This agrees with (1) since the total
quantum dimension of Z2 gauge theory is D � 2.

General string-net models.—To derive (1) in the general
(parity invariant) case, we compute the topological entropy
for the exactly soluble string-net models discussed in
Ref. [10]. The ground states of these models describe all
�2� 1�-dimensional parity invariant topological orders.
The models and the associated topological orders are char-
acterized by several pieces of data: (a) an integer N—the
number of string types. (b) A completely symmetric tensor
�ijk where i; j; k � 0; 1; . . . ; N and �ijk only takes on the
values 0 or 1. This tensor represents the branching rules:
5-2
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FIG. 4 (color online). A typical string-net state on the honey-
comb lattice. The empty links correspond to spins in the i � 0
state. The orientation conventions on the links are denoted by
arrows.
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three string types i; j; k are allowed to meet at a point if and
only if �ijk � 1. (c) A dual string type i� corresponding to
each string type i. This dual string type corresponds to the
same string, but with the opposite orientation. (d) A real
tensor di and a complex tensor Fijmkln satisfying certain
algebraic relations [10]. For each set of Fijmkln ; di; �ijk sat-
isfying these relations, there is a corresponding exactly
soluble topologically ordered spin model.

The spins in the model are located on the links k of the
honeycomb lattice. However, the spins are not usual
spin-1=2 spins. Each spin can be in N � 1 different states
which we will label by i � 0; 1; . . . ; N. The Hamiltonian of
the model involves a 12 spin interaction [10]. The model is
known to be gapped and topologically ordered and all the
relevant quantities—ground state degeneracies, quasipar-
ticle statistics, etc. can be calculated explicitly.

The ground state wave function � is also known exactly.
It is easiest to describe using the string-net language. One
first needs to pick an orientation for each link on the
honeycomb lattice. When a spin is in state i, we think of
the link as being occupied by a type-i string oriented in the
appropriate direction. If a spin is in state i � 0, then we
think of the link as empty. In this way spin states corre-
spond to string-net states (see Fig. 4).

If a spin configuration fikg corresponds to an invalid
string-net configuration—that is, a string-net configuration
that does not obey the branching rules defined by �ijk—
then ��fikg� � 0. On the other hand, if fikg corresponds to
a valid string-net configuration then the amplitude is in
general nonzero. What are these amplitudes? Unfortu-
nately, we do not have an explicit formula. However, we
can write down linear relations that determine the ampli-
tudes uniquely. These relations relate the amplitudes of
string-net configurations that only differ by small local
transformations. The relations are given by

where the shaded areas represent other parts of the string
nets that are not changed. Also, the type-0 string is inter-
preted as the no-string (or vacuum) state. The first relation
(3) is drawn schematically. The more precise statement of
this rule is that any two string-net configurations on the
honeycomb lattice that can be continuously deformed into
each other have the same amplitude. In other words, the
11040
string-net wave function � only depends on the topologies
of the network of strings.

By applying these relations multiple times, one can
compute the amplitude for any string-net configuration
(on the honeycomb lattice) in terms of the amplitude of
the vacuum configuration. Thus, (3)–(6) completely spec-
ify the ground state wave function �.

Let us first compute the von Neumann entropy SR of the
exact ground state wave function � for a simply connected
region R (see Fig. 3). Again we split the site on the
boundary links into two sites. We decompose � into � �P
l�

in
l �out

l , where �in
l are wave functions of spins inside R,

�out
l are wave functions of spins outside R, and l is some

dummy index.
A wave function �in on the spins inside of R can be

defined as follows. Let fikg be some spin configuration
inside of R. If fikg does not correspond to a valid string-
net configuration—that is, one that obeys the branching
rules, then we define �in�fikg� � 0. If fikg does correspond
to a valid string-net configuration, then we define �in�fikg�
using the graphical rules (3)–(6).

However, there is an additional subtlety. Recall that in
the case of �, the graphical rules could be used to reduce
any string-net configuration to the vacuum configuration.
To fix �, we defined ��vacuum� � 1.

In this case, since we are dealing with a region R with a
boundary, string-net configurations cannot generally be
reduced to the vacuum configuration. However, they can
be reduced to the treelike diagrams Xfq;sg shown in
Fig. 5(a). Thus, to define �in, we need to specify the
amplitude for all of these basic configurations. There are
multiple ways of doing this and hence multiple possibili-
ties for �in. Here, we will consider all the possibilities.
For any labeling q1; . . . ; qn; s1; . . . ; sn�3 of the string-net
in Fig. 5(a), we define a wave function �in

fq;sg by
�in
fq;sg�Xfq0;s0g� � �fqg;fq0g�fsg;fs0g. Starting from these ampli-

tudes and using the graphical rules (3)–(6) we can deter-
mine �in

fq;sg�X� for all other string-net configurations. In the
same way, we can define wave functions �out

fr;tg on the spins
outside of R through �out

fr;tg�Yfr0;t0g� � �frg;fr0g�ftg;ft0g, where
the Yfr;tg are shown in Fig. 5(b).

Now consider the product wave functions �in
fq;sg�

out
fr;tg.

These are wave functions on the all the spins in the sys-
5-3
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FIG. 6 (color online). The string-net configuration Zfq;s;r;tg
obtained by ‘‘gluing’’ the configuration Xfq;sg to Yfr;tg.
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FIG. 5 (color online). The basic string-net configurations
(a) Xfq;sg for inside R and (b) Yfr;tg for outside R.
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tem—both inside and outside R. They can be generated
from the amplitudes for the string-net configurations
Zfq;s;r;tg in Fig. 6:

�in
fq;sg�

out
fr;tg�Zfq0;s0;r0;t0g� � �fqg;fq0g�fsg;fs0g�frg;fr0g�ftg;ft0g:

On the other hand, it is not hard to show that for the
ground state wave function �, the amplitude for Zfq;s;r;tg is

��Zfq;s;r;tg� � �fqg;frg�fsg;ftg
Y
m

�
��������
dqm

q
�:

Comparing the two, we see that

� �
X
fq;s;r;tg;

�in
fq;sg�

out
fr;tg�fqg;frg�fsg;ftg

Y
m

�
��������
dqm

q
�: (7)

It turns out that the wave functions f�in
fq;sgg are orthonor-

mal, as are the f�out
fr;tgg. This means that we can use them as

a basis. If we denote �in
fq;sg�

out
fr;tg by jfq; s; r; tgi, then in this

basis, the wave function � is

hfq; s; r; tgj�i � �fqg;frg�fsg;ftg
Y
m

�
��������
dqm

q
�: (8)

The density matrix for the region R can now be obtained by
tracing out the spins outside of R, or equivalently, tracing
out the spin states jfr; tgi:

hfq0; s0gj�Rjfq; sgi � �fqg;fq0g�fsg;fs0g
Y
m

dqm: (9)

Since the density matrix is diagonal, we can easily obtain
the entanglement entropy for SR. Normalizing �R so that
Tr ��R� � 1, and taking �Tr�R log�R, we find

SR � �
X
fq;sg

Q
m dqm
Dn�1 log

�Q
l dql

Dn�1

�
; (10)

where D �
P
kd

2
k. The sum can be evaluated explicitly

[with the help of the relations in [10] ]. The result is

SR � � log�D� � n
XN
k�0

d2
k

D
log

�
dk
D

�
: (11)

This result applies to simply connected regions like the one
shown in Fig. 1. The same argument can be applied to
general regions R. In the general case, we find

SR � �j log�D� � n
XN
k�0

d2
k

D
log

�
dk
D

�
; (12)
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where n is the number of spins along @R, and j is the
number of disconnected boundary curves in @R.

We can now calculate the topological entropy associated
with �. Applying (12), we find S1 � �2 log D� n1s0,
S2 � � log D� n2s0, S3 � � log D� n3s0, and S4 �
�2 log D� n4s0, where n1; n2; n3; n4 are the numbers of
spins along the boundaries of the four regions, and s0 �PN
k�0

d2
k
D log�dkD�. The topological entropy is therefore

�Stop��2 log D��n1�n2�n3�n4�s0��2 log D, in
agreement with (1).

This research is supported by NSF Grant No. DMR-01-
23156 and by ARO Grant No. W911NF-05-1-0474.

Note added.—Near the completion of this Letter, we
become aware of a similar result, obtained independently
in the recent paper, Ref. [14].
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