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Strongly Interacting Fermi Gases with Density Imbalance

J. Kinnunen, L. M. Jensen, and P. Törmä
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We consider density-imbalanced Fermi gases of atoms in the strongly interacting, i.e., unitarity, regime.
The Bogoliubov–de Gennes equations for a trapped superfluid are solved. They take into account the
finite size of the system, as well as give rise to both phase separation and Fulde-Ferrel-Larkin-
Ovchinnikov-type oscillations in the order parameter. We show how radio-frequency spectroscopy reflects
the phase separation, and can provide direct evidence of the FFLO-type oscillations via observing the
nodes of the order parameter.
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Bardeen-Cooper-Schrieffer (BCS) pairing is behind
various forms of superconductivity and superfluidity. A
prerequisite for BCS pairing is the matching of the Fermi
energies of the two pairing components (e.g., spin-up and
spin-down electrons). In the case of spin-imbalanced (po-
larized) Fermi energies, nonstandard forms of pairing are
predicted, such as Fulde-Ferrel-Larkin-Ovchinnikov
(FFLO) pairing [1,2], interior gap superfluidity or breached
pairing [3–8], and phase separation [9,10]. These exotic
quantum states have relevance to many fields of physics,
e.g., superconductors in a magnetic field, neutron-proton
pairing in nuclear matter, and color superconductivity in
high density QCD; for a recent extensive review see [11].
The newly realized strongly interacting superfluid Fermi
gases [12–20] offer a promising playground for the study
of pairing and superfluidity with variable initial condi-
tions—also imbalanced Fermi energies. Indeed, the first
such experiments have recently been done, showing the
disappearance of superfluidity and vortices with increasing
spin-density imbalance [21], and phase separation [21,22].
Here we consider theoretically the density-imbalanced
Fermi gas in the unitarity regime, discuss the role of finite
size effects, and show how phase separation and FFLO-
type oscillations appear and can be observed in the rf
spectrum of the system.

Atomic Fermi gases are confined in magnetic or optical
traps and the harmonic trapping potential causes significant
finite size effects. For instance, for the density-imbalanced
system, clear phase separation of the majority component,
i.e., the component with the most atoms, towards the edges
of the trap has been experimentally observed in [21,22].
Theoretically, the finite size can be taken into account by
solving the Bogoliubov–de Gennes equations in the trap
geometry. This has been done for the density-imbalanced
case in the BCS limit (weak coupling limit) in [23–25]. In
the opposite limit where the coupling is so strong that
dimers are formed and undergo Bose-Einstein condensa-
tion, the system has been described by a mean-field treat-
ment of a bosonic condensate interacting with fermions in
normal state within the local density approximation [26].
Here we consider the intermediate case, where the inter-
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actions are strong, but the pairing is still fermionic in
nature. In the ultracold atomic Fermi gases this corre-
sponds to the Feshbach-resonance, or unitarity, regime.
This regime was considered both in [21,22], thereby our
results provide direct comparison to the experiments.

We use the single-channel mean-field resonance super-
fluidity Hamiltonian [27,28]
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2 is the spherically symmetric har-
monic trapping potential with m the atom mass and !0 the
trap oscillator frequency, �� is the chemical potential for
atoms in hyperfine state �, and U is the effective interac-
tion strength. This describes a two-component (� �"; # ,
now two different hyperfine states of the atom) gas with
s-wave contact interactions, where the strength of the
interaction is tunable via a Feshbach resonance.

Following the treatment in Ref. [28], we expand the field
operators in eigenstates of the harmonic potential
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This gives the Hamiltonian
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where the single-particle energies are �nl� � @!0�2n�
l� 3=2� ���, the matrix element Flnn0 �

R
1
0 drr

2 	

Rnl�r�~��r�Rn0l�r� corresponds to anomalous term that de-
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scribes the Cooper pair field ��r�, and Jlnn0� �P
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2Rnl�r�n�0 �r�Rn0l�r� is the Hartree interac-
tion term. The order parameter is given by
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and the fermion densities are
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These equations are solved self-consistently for fixed atom
numbers N" and N# by varying the corresponding chemical
potentials ��. The Hamiltonian (2) is diagonalized using
the Bogoliubov transformation and the resulting eigen-
states are used to calculate the excitation gap and density
profiles from Eqs. (3) and (4). The diagonalization gives
rise to positive and negative eigenenergies Enl�, and, since
in a general setting the particle-hole symmetry is broken,
we need to keep all the solutions.

We have solved the excitation gap ��r� and the density
profiles n��r� at zero temperature for 4570 atoms in the
majority component (N"), while the number of atoms in the
minority component (N#) varies. We also tried finite tem-
peratures, but observed no significant changes to the pic-
ture. The parameters have been chosen for 6Li in the
unitarity limit with interaction parameter kFa � �16,

where the Fermi wave vector is given by @
2k2
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FIG. 1 (color online). The radial density profiles for the ma-
jority ( " state, shown in dashed line) and minority ( # state,
shown in dotted line) components n��r�. Solid line shows the
density difference as a function of distance from the center of the
trap. The polarizations are P � 0:04 (upper panel),
P � 0:17 (upper middle panel), P � 0:34 (lower middle panel),
and P � 0:49 (lower panel).
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@!0�6N"�1=3. The resulting profiles are shown in Figs. 1
and 3 for several polarizations P � N"�N#

N"�N#
.

The main qualitative features of the density profiles in
Figs. 1 and 2 agree well with the experiments in
Refs. [21,22]. Figure 1 shows the calculated radial density.
Experimentally, the densities are observed via imaging
from one direction, leading to column integrated densities.
Corresponding integrated results from our calculations are
shown in Fig. 2. The density profiles show the phase
separation into a superfluid core and a normal fluid shell.
The core corresponds to equal densities of the two compo-
nents while at the edges the majority component atoms are
dominating. In the column integrated picture Fig. 2, the
excess amount of the majority component at the edges of
the trap leads to an effective density difference also at r �
0. This is seen both in Fig. 2 and in the experiments
[21,22]. The bump in the density difference at the edge
of the trap is an even more clear signature of phase sepa-
ration. In [22], two regimes were observed, namely: below
polarization P � 0:1, a coexistence regime where the den-
sity difference does not show clear bumps (actually devia-
tions from Thomas-Fermi profiles were used as the
measure), and phase separation regime where these fea-
tures are clearly visible. According to our results, there is
no sharp transition between these two regimes; the phase
separation starts immediately even for small polarizations,
but the effect then may well be too small to observe. The
absence of a sharp transition does not exclude the possi-
bility of a crossover behavior where the amount of phase
separation starts to grow faster after a certain threshold. To
this extent, we plot in Fig. 4 the excitation gap � at center
of the trap, as well as the size (volume) of the superfluid
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FIG. 2 (color online). The column integrated density profiles
for the majority (dashed line) and minority (dotted line) compo-
nents. Solid line shows the density difference as a function of
distance from the center of the trap. The polarizations are the
same as in Fig. 1.
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FIG. 3 (color online). The radial density (dashed line for the "
state and dotted line for the # state) and the gap (solid line)
profiles for polarizations P � 0:34 (left) and P � 0:88 (right).
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core, as functions of the polarization. There might be a
change of slopes around the polarization P � 0:2, but these
results alone are not sufficient for any conclusive state-
ments about a crossover behavior. However, they tell
clearly that the value of the gap at the center tends to
stay quite constant, and the effect of the polarization is
mainly to decrease the superfluid core size. Indeed, the
superfluid core size becomes negligible at some polariza-
tion P between 0.6–0.9, agreeing well with the experi-
ments [21], where P � 0:7 was found to be a threshold for
the disappearance of the condensate at the unitarity limit.

In Fig. 5 we show how the phase separation is reflected
in the rf spectrum of the gas. rf spectroscopy [29,30] has
been used, e.g., to observe the excitation gap of the system
[18,31,32]. We calculate the spectra using the method
presented in [33]. The results of Fig. 5 show a broad
peak at finite rf-field detuning, corresponding to paired
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FIG. 4 (color online). The value of the order parameter at the
center of the trap (squares) and the fraction of the superfluid
core as compared to the Fermi sphere of the major compo-
nent (circles) plotted as functions of polarization P.
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atoms, and the detuning is related to the pairing energy
�. Note that there are equal amounts of paired atoms for
both components. The narrow peak at zero detuning cor-
responds to the nonpaired majority component atoms at the
edge of the trap. This could be a probe of phase separation,
complementary to the straightforward observation of the
density profiles, since it does not suffer from the effects of
column integration and provides a direct comparison be-
tween the amounts of the paired and nonpaired atoms.

The gap and density profiles in Fig. 3 show the oscil-
lation of the order parameter and the density as a function
of the radial coordinate. Such oscillations have been ac-
counted [23–25] for a FFLO-type phase. The FFLO state
in homogenous space leads to oscillations of the order
parameter, and is by definition pairing with unequal num-
ber of particles. In homogenous space, the FFLO pairing
starts only after a critical polarization. In our results,
oscillations are also visible for small polarizations,
although as tiny effects. This is understandable in the sense
that, as the trap favors phase separation, the local polar-
ization at the edges of the trap becomes very easily of
considerable size. Therefore, locally one can fulfill the
FFLO condition of exceeding a critical polarization, even
when the total polarization is small. One could interpret the
results in the following way: the trap tends to enforce a
normal BCS state at the center of the trap and a FFLO-type
state at the edges, and the significance of the latter grows
with the total polarization. Is this FFLO-type state observ-
able? It may have existed in the experiments [21,22]. The
oscillations of the order parameter are accompanied by
oscillations of the densities, and therefore, in principle,
one could observe the FFLO characteristics from the den-
sity profiles. The column integration, however, tends to
wash out the oscillations as can be seen by comparing
Figs. 1 and 2. Thus, experimentally it may be difficult
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FIG. 5 (color online). The rf spectra for different components.
Left panel shows the spectra for both majority (dotted line) and
minority (solid line) components for polarization P � 0:34, and
the right panel shows the spectrum for the minority component
for polarization P � 0:88. The calculations are done at T � 0.
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(although column integration can in principle be avoided
by more advanced techniques) to detect the FFLO phase
from the density profiles. The nodes of the order parameter,
however, should be visible in the rf spectrum of the minor-
ity component; they produce a peak at zero detuning,
reflecting a finite number of nonpaired atoms also in the
minority component. This too, may be a small effect for
some parameters, e.g., in the left panel of Fig. 4 such a zero
detuning peak is not visible in the minority component.
However, for parameter values that also produce a more
prominent oscillation of the order parameter (Fig. 3 right
panel), the zero detuning peak becomes clearly visible, see
the right panel in Fig. 4. This is a direct evidence for the
nodes of the order parameter. Situations where such sig-
natures are large enough to be observed can probably be
achieved experimentally. For instance, we were restricted
to spherical geometry due to computational reasons, but a
cigar-shaped system is likely to display more prominent
oscillations.

In summary, we considered trapped, strongly interacting
Fermi gases with unequal populations of the pairing com-
ponents. We relate our findings to recent experiments and
suggest new ways of observing the phase separation and,
especially, FFLO features. The system seems to be suited
for detailed studies of exotic forms of fermion pairing. Our
results show that the trapping potential affects the system
in an essential way; spatial regions with different pairing
characteristics tend to form and finite size effects have to
be carefully taken into account in understanding the
system.
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