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The dynamic behavior of hard chains in disordered materials composed of fixed hard spheres is studied
using discontinuous molecular dynamics simulations. The matrix induces entanglements in the chain
fluid, i.e., for high matrix densities the diffusion coefficient D scales with the chain length N as D ~ N -2,
At high matrix densities the rotational relaxation time becomes very large but the translational diffusion is
not affected significantly; i.e., the chains display a dynamic heterogeneity reminiscent of probe diffusion
in supercooled liquids and glasses. We show that this is because some chains are trapped, and move via a
hopping mechanism. There are no signatures of this dynamic heterogeneity in the matrix static structure,
however, which is identical to that of a hard-sphere liquid.
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A central question in soft matter is how complex fluids
move in complex environments. Practical examples are the
diffusion of macromolecules in crowded living cells [1,2],
gels [3,4], or glasses [5]. Often on the time scale of interest
for solute transport the matrix is essentially static, and it is
of considerable importance to be able to relate the structure
of the matrix to the dynamic properties of the solutes.
While this is an area of active experimental research,
what has been lacking is a set of dynamical models with
structural complexity that could play the same role that
Ising and lattice models did for critical phenomena. In this
Letter we present molecular dynamics simulations of a
simple model, namely, hard chains in a matrix of fixed
hard spheres, and show that this simple model has very
interesting dynamics and captures much of the phenome-
nology seen in the dynamics of probes in structural glasses
[6].

The heterogeneous nature of the dynamics of probes in
glasses is a topic of continuing interest. NMR [7] and
dynamic hole burning [8] experiments on the rotational
dynamics of probes in glasses and supercooled liquids have
shown that a subset of probe molecules have rotational
relaxation times that are orders of magnitude greater than
the average. More recently, single molecule experiments
[9] have demonstrated that the rotational dynamics of
probes in supercooled liquids is strikingly heterogeneous,
i.e., different probes rotate at very different rates, with
single probes switching from “fast” to “slow” or vice
versa almost instantaneously. The molecular origin of these
spatially heterogeneous dynamics remains an open ques-
tion of considerable current interest [6].

Computer simulations have played an important role
in our understanding of supercooled liquids. In fact, spa-
tial heterogeneity is observed in simulations of binary
(noncrystallizable) mixtures of Lennard-Jones particles
[10,11], although this occurs at temperatures much above
the glass transition. As the liquid is cooled, however, the
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relaxation times become prohibitively large, preventing the
simulation of the glass transition itself.

In this work, we take a different approach to the problem
and focus on the dynamics of probes in glasses by con-
struction rather than trying to create a structural glass by
cooling. We model the matrix as a collection of spheres
fixed in space and investigate the dynamics of chainlike
probe molecules in these matrices. We find that the dy-
namic behavior can be very interesting and can reproduce
much of the phenomenology observed in experiment.
There is no signature of this in the average static structure
factor of the matrix, however, which is (by construction)
identical to that of a hard-sphere liquid.

The main challenge in the computational study of dis-
ordered materials is that the positions of the matrix parti-
cles are quenched. An average over realizations of the
matrix is necessary, which make the simulations computa-
tionally intensive. Consequently, although there have been
a number of computational studies of lattice and/or two
dimensional models or single chains [12-16], to our
knowledge there have been no studies of the dynamics of
solutions of macromolecules in random media except for
solutions of chains [17] and rods [18] in two dimensions.
We overcome the problems associated with simulations by
employing a model with only impulsive forces that allows
us to use the efficient discontinuous molecular dynamics
(DMD) algorithm [19]. Monte Carlo (MC) simulations
[13-16] provide useful insight into chain behavior, but
there is a worry that the dynamics might be influenced
by the MC moves used to propagate the system, and MD
simulations are therefore important.

The solute molecules are modeled as chains of N hard
spheres of diameter o, where N is the number of mono-
mers (or sites) in a chain. The bond length between adja-
cent beads is allowed to vary freely between (1 — 83)o
and (1 + 8p)o, with 65 = 0.05 [20]. The static properties
of this model are identical to the tangent hard-sphere chain
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model [21]. The disordered matrix is a set of immobile
hard spheres with diameter . We define our length, en-
ergy, and mass scales by setting o = 1, kyT = 1, and m =
1 where kg is Boltzmann’s constant, 7 is the temperature,
and m is the mass of each monomer. The time ¢ is reported

in units of o+/m/kgT. The simulation cell is a cube of side
length L which contains N, chains, with N, = 16. L is
chosen so that it is larger than the root mean-square end-to-
end distance of the chains and contains a large enough
number of chains and matrix particles for good statistics. In
most cases L = 11.0260 and for N,, = 16 and high matrix
volume fractions L = 13.892¢. We investigate chain
lengths ranging from N = 1 to 16. These chain lengths
are relatively short compared to previous MC studies [13—
16] but the qualitative behavior is similar to longer chains.
Realizations of the matrix are obtained from statistically
independent configurations of a hard-sphere liquid. The
chain molecules are then inserted at randomly chosen
positions. At high densities this is done using a growth
and equilibration technique. We investigate chain volume
fractions, ¢, (= NN,mo?/6L%) ranging from 0.05 to 0.3,
and matrix volume fractions, ¢,, ( = N,,m0o>/6L> where
N, is the number of matrix spheres) ranging from 0 to 0.2.
Note that ¢, = 0.2 corresponds to a very dense matrix. In
fact, in the infinite dilution limit, a hard-sphere fluid in a
hard-sphere matrix is predicted by mode coupling theory to
undergo a glass transition for ¢,, = 0.175 [22]. At higher
matrix concentrations (¢, > 0.2) chains are virtually
trapped and do not diffuse normally.

Simulations are performed using DMD [19] where tra-
jectories are evolved as a sequence of collisions. First it is
determined which pair of spheres will be the next to
collide, then all spheres are moved with constant velocities
for the time it takes for the colliding spheres to come into
contact, and finally the velocities of the colliding spheres
are reset according to the dynamics of an elastic collision.
Properties are time averaged over many collisions. Details
regarding the simulation method can be found elsewhere
[23,24]. The DMD method has the advantage that one can
replay trajectories if the identity of colliding pairs (at each
collision) is stored.

The simulations require a time average for each realiza-
tion of the matrix and then an ensemble average over
different realizations of the matrix. For each realization
of the matrix, properties are averaged over 1000 trajecto-
ries, with the final configuration of one trajectory used as
the initial configuration of the next. The length of the
simulation depends on the matrix density and the chain
length. For ¢, = 0.05 and ¢,, = 0.2, the total duration of
the simulation is 10*, 10°, 3 X 10°, and 10° for N,, = 2, 4,
8, and 16, respectively. Properties are then averaged over
8—16 different realizations of the matrix, depending on the
matrix volume fraction. Error bars in this Letter correspond
to 1 standard deviation about the mean of the matrix
average.

For the chain lengths studied, the scaling of the transla-
tional diffusion coefficient D and rotational relaxation time

T with N is consistent with entangled behavior. D is
obtained from the mean-square displacement of the chain
center of mass, and 7 is obtained by fitting the initial
decay of the end-to-end vector rotational autocorrelation
function, U(z) (defined below), to an exponential function.
U(r) is defined as U(r) = (R(z) - R(0))/(R(0) - R(0))
where R(?) is the end-to-end vector of a chain at time t.
U(¢) is first calculated for each chain, with an average over
initial times, and the result is averaged over the ensemble
of chains. In the absence of the matrix D ~ R;l in dilute
solutions and D ~ N~! in semidilute solutions, consistent
with a crossover from Zimm to Rouse behavior. The ex-
ponent is markedly different in the presence of the matrix.
For ¢,, = 0.1 and 0.2, D is well fit by a power law for N =
4,1ie., D~ N"% with « = 1.5 = 0.01 and 2.06 = 0.06,
and the latter is consistent with the scaling expected for
entangled chains. Similarly, in the absence of the matrix,
7x ~ NP with B varying from approximately 1.2 to 2 as ¢,
is increased, which corresponds to a transition from Zimm
to Rouse dynamics. As the matrix volume fraction is
increased, the value of B increases as well, and for ¢,, =
0.2, B = 3 £ 0.2, corresponding to entangled chains. This
increase of the dynamic scaling exponent with increasing
matrix concentration is consistent with Monte Carlo simu-
lations [13,14,16]. In fact, the exponent can be even larger
(in magnitude) than observed here [13,14] and the value of
the exponent depends on the model as well as the matrix
density [16]. Our results are consistent with the picture that
the chains diffuse in channels inside the matrix, which act
as tubes, thus resulting in reptationlike dynamics for the
chains.

The rotational dynamics of the chains display two re-
gimes, with a rapid relaxation at short times followed by
(in some cases) a slow relaxation at long times. A long tail
in U(z) is prominent for high matrix volume fractions. This
can be seen in Fig. 1, which depicts U(7) as a function of
t/N? for ¢,, = 0.2, ¢, = 0.05, and various chain lengths.
Atlong times U(¢) levels off at a nonzero value for all chain
lengths, even N = 2. Interestingly, there is no signature of
this slow dynamic behavior in the translational diffusion.
In fact, the mean-square center-of-mass displacement,
W(r), is linear with time at long times in all cases (although
anomalous diffusion is observed at intermediate times).
Although it is true that the translational diffusion should
eventually lead to rotational relaxation, we do not observe
a complete relaxation even though the chains appear to
diffuse freely, on average. Therefore at high matrix volume
fractions (¢,, = 0.20) the chain dynamics are similar to
those of entangled polymer melts (7z ~ N and D ~ N™2),
except that there is a long-time component similar to what
is observed in experiments for the dynamics of probes in
glassy materials.

The difference in the rotational and translational dynam-
ics can be explained if some chains are assumed to be
trapped. For normal diffusion, W(z) increases linearly with
time and U(r) decays rapidly to zero. Consider the case,
however, that a small number of chains are immobile. The
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FIG. 1. End-to-end vector autocorrelation function, U(%), for
various chain lengths as a function of ¢/N* for ¢, = 0.05 and
¢,, = 0.20, plotted on a logarithmic scale.

contribution of these trapped chains to W(z) is a constant at
long times and the average W(f) is dominated by the
mobile chains. If the number of trapped chains is small,
the translational diffusion will show no signature of trap-
ping. The contribution of these trapped chains to U(7),
however, is more significant because at long times the
contribution of mobile chains is zero, and that of trapped
chains is finite. As a consequence, at long times, the
average rotational relaxation is dominated by the trapped
chains while the average translational relaxation is domi-
nated by mobile chains.

If the contribution from the trapped chains is removed
from U(t), then this function decays rapidly to zero in all
cases. Figure 2 shows the probability distribution of finding
a chain with a value of U(7) as a function of U(7), for 7 =
2.55 X 10°, and for N = 16, ¢, = 0.05, and ¢,, = 0.20.
The distribution has a strong peak at 7 = 0, and a fraction
of chains have U(7 = 2.55 X 10°) > 0.2 that clearly do
not belong to the primary peak. We define these chains as
trapped over the course of the simulation. Although the
fraction of the trapped chains is small, these trajectories
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FIG. 2. Probability distribution of U(r = 2.55 X 10°) of 16-
bead chains for ¢. = 0.05 and ¢,, = 0.20. About 12% of
256 chains give values greater than 0.2.

dominate the long-time behavior of the rotational relaxa-
tion. The solid line in Fig. 1 is U(¢) averaged over the
subset of untrapped chains and shows normal relaxation.
Note, however, that the short-time rotational relaxation is
less sensitive to the trapped trajectories, and the relaxation
time 7y discussed earlier does not change significantly
when the contribution of the trapped chains is removed.
An examination of the trajectories of individual chains
provides molecular information consistent with the above
physical picture. This analysis shows that the molecules
can be divided into two categories, at the highest matrix
fraction. A small fraction of chains are trapped over the
entire duration of the simulation and do not translate or
rotate. The other chains do diffuse on long time scales but
do so via a hopping mechanism. Figure 3 shows a sample
trajectory for a N = 16 chain that shows how the center of
mass displacement fluctuates about a constant value for
long periods of time and then shows sudden changes which
we attribute to hopping. An analysis of the hopping process
shows that the probability distribution of trapping times is
roughly exponential and not power law as might be ex-
pected if the process was a continuous time random walk.
The decoupling of translational and rotational relaxation
and the presence of the hopping mechanism are signatures
of dynamic heterogeneity. We refer to regions where the
chains are trapped as slow regions and regions where the
chains are mobile as fast regions. What determines if a
region is fast? We find that the first peak in the pair
correlation function, g,,.(r), between the matrix and chain
sites is higher for trapped chains than for mobile chains,
and the distribution function of local matrix volume frac-
tion (defined shortly), P(¢;), is shifted to slightly higher
volume fractions, although these differences are not sta-
tistically significant. [P(¢;) is obtained by dividing the
simulation box into cubic cells of side length A, with ¢,
defined as the matrix volume fraction of the cell where the
chain center of mass is located. P(¢,) is the un-normalized
distribution of ¢;] This can be seen in Figs. 4(a) and 4(b)
which compare g,,.(r) and P(¢,;), respectively, for mo-
bile and trapped chains for N =16, ¢, = 0.05, and
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FIG. 3. Sample trajectory of the center of mass of a 16-bead
chain for ¢, = 0.05 and ¢,, = 0.20.
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FIG. 4. (a) Pair correlation functions between the matrix and
chain sites, g,,.(r), and (b) distribution of local matrix volume
fraction, P(¢;), for N = 16, ¢, = 0.05, and ¢,, = 0.20.

®,, = 0.20. Consistent with intuition, slower regions cor-
respond to higher local matrix volume fractions as well as a
higher probability of finding a matrix particle near a given
monomer. The effect is not statistically significant, how-
ever, which suggests that factors other than matrix density
must play a significant role in the chain dynamics. For
example, the distribution of void spaces and their connec-
tivity might be more important in determining solute
dynamics.

In summary, we present MD simulations of hard chains
in matrices of immobile hard spheres. Entanglement scal-
ing is observed for the translational diffusion and initial
decay of the rotational relaxation for high matrix densities.
We observe that a fraction of chains are trapped at high
matrix densities and this results in signatures of dynamic
heterogeneity, i.e., the average end-to-end vector autocor-
relation function does not decay even though the transla-
tional diffusion is normal. Under these conditions the
mobile chains move via a hopping mechanism and can
be trapped for several rotational relaxation times. The local
matrix density near trapped chains is higher than that near
mobile chains, but the effect is not statistically significant
and probably not sufficient to explain the difference in
dynamics. An important conclusion is that structural
changes are not necessary for heterogeneity in the dynam-
ics: The average structure of the random matrices in this
work is identical to a hard-sphere liquid.

Extensions of this model can be used to study the
melting of a glass and hence the glass transition. In this
work the mass of the matrix spheres is infinite. By decreas-
ing the mass of the spheres one can smoothly transition
between a glass and a liquid, thus shedding light on the
change in solute dynamics as the glass transition is ap-
proached. These are interesting directions that are promis-
ing avenues for understanding the nature of dynamics near
a glass transition.
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