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Segment Distributions of End-Tethered Polymers in a Good Solvent
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We use confocal fluorescence microscopy to study the conformation of single DNA molecules end-
tethered to a solid substrate. The segment distribution ��z� measured for chains with contour lengths
15:4 �m � L � 59:4 �m as a function of the distance from the substrate z can be scaled onto a master
curve depending only on the scaled distance z=Rg, in quantitative agreement with theoretical predictions
for end-tethered polymers in a good solvent. The scaling of the radius of gyration Rg � L0:57�0:05 shows
the presence of excluded-volume interactions between the charged DNA segments. Independent mea-
surements of Rg from end-segment distributions are in good agreement with values obtained from the
segment distributions and provide evidence that the radius of gyration of end-tethered chains in a good
solvent is identical to that of the free chain.
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Polymers tethered to solid substrates have widespread
technical applications, such as the stabilization of colloidal
suspensions against coagulation, the protection of biosen-
sors against unspecific binding, and for lubrication and
adhesion [1–4]. The presence of an impenetrable substrate
profoundly affects the conformation and segment distribu-
tion of a polymer chain with N segments that is attached to
it by one of its ends at a tether surface density �. When the
interaction between monomers and substrate is repulsive,
scaling theory for isolated end-tethered polymers pre-
dicts a depletion zone near the surface characterized by a
segment distribution increasing as ��z� � z� with the dis-
tance z from the substrate; here, � is related to the critical
(Flory) exponent � by � � �1� ��=� which in a good
solvent (� � 0:588 [5]) takes the value � � 0:7 [6]. At
larger distances, the influence of the wall should become
weaker, and the segment distribution can be expected to
approach a maximum value ��Rg� � �N=Rg given by the
average segment density within the polymer layer whose
height is approximately given by the radius of gyration
Rg of the free, unperturbed chain [6]. The slow increase of
the segment distribution close to the substrate, together
with its fast decay for distances z	 Rg predicted by
renormalization-group (RG) calculations [7] and computer
simulations [8], suggests that the segment distribution of
an end-tethered polymer in the low-density limit �R2

g 
 1
is strongly asymmetric, resembling the shape of a
mushroom.

Although this ‘‘mushroom’’ conformation of an isolated
end-tethered polymer represents the simplest situation of a
broken symmetry for polymer statistics, detailed experi-
mental tests of the theoretical predictions for ��z� in the
low-density limit are lacking. Neutron reflectivity mea-
surements on end-adsorbed diblock copolymers confirmed
the existence of a depletion layer close to the surface and
the RG prediction for the second moment of the segment
distribution hz2i � 2:16R2

g [9,10]. However, the determi-
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nation of the segment distribution ��z� and radius of gy-
ration Rg of polymer mushrooms using neutron reflectivity
is difficult since this technique requires the averaging over
a large number of polymer chains whose length distribu-
tion is usually not negligible for synthetic polymers.

In this Letter we present direct measurements of the
segment distributions of end-tethered polymers with uni-
form chain length in a good solvent, using confocal fluo-
rescence microscopy on single DNA molecules labeled
with a fluorescent intercalation dye. Segment distributions
measured over the range of contour lengths 15:4 �m �
L � 59:4 �m can be superimposed on a master curve by
scaling the distance z from the surface with the radius of
gyration Rg. The measured radius of gyration is found to
scale as Rg � L0:57�0:05, providing direct evidence for
excluded-volume behavior due to electrostatic repulsion
between the DNA segments. Independent measurements of
Rg from end-segment distributions are in good agreement
with values obtained from the segment distributions and
provide evidence that the radius of gyration of end-tethered
chains in a good solvent is identical to that of the free
chain.

Experiments were carried out with double-stranded
DNA molecules attached with one end to glass substrates
[11]. A confocal microscope equipped with a 100� objec-
tive with numerical aperture 1.45, a Nipkow disk and a
cooled CCD camera (Hamamatsu Orca II) was used to
measure the YOYO-1 fluorescence at � � �525� 25� nm
with an integration time of 0.8 s per frame. Slices through
the 3-dimensional distributions of the fluorescence inten-
sity were measured from a position zmin � �2 �m well
below the substrate-solvent interface to zmax � 10 �m
above it, in intervals �z � 100 nm. Within the field of
view of the confocal microscope of 35 �m� 45 �m we
typically observed about 10 DNA molecules simulta-
neously, corresponding to a very low reduced tether density
�R2

g � 4� 10�4. All the surface-bound DNA molecules
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were end-attached, as shown by fluorescence images re-
corded during electrophoretic stretching of the DNA par-
allel to the substrate.

The fluorescence signal from the DNA molecules was
isolated from the background signal and detector noise by
defining areas of about 3 �m� 3 �m around bright, fluc-
tuating intensity maxima that could be identified as DNA
molecules. High-frequency noise was removed by con-
volving each frame with a Gaussian 1.5 pixels wide. By
selecting an area of 1 �m� 1 �m in a DNA-free spot
next to a molecule we estimated the local background
signal for each molecule separately, which was then sub-
tracted from the denoised data, yielding the denoised and
background-corrected 3-dimensional fluorescence signal
R�r� [see Fig. 1(a)]. In order to measure the intensity-
weighted segment distribution S�z� each of the R�r� frames
was binarized in the xy plane. The threshold was defined
by the mean intensity plus the standard deviation of the
intensity distribution of the frame. The area A�z� occupied
by one molecule at height zwas determined from the bright
pixels of the resulting black-and-white image. The inte-
grated fluorescence intensity within this area was calcu-
lated and normalized with A�z� resulting in the intensity-
weighted segment distribution S�z�. The origin of the z axis
was determined by locating the maximum in the back-
ground signal near the solvent-substrate interface arising
from streptavidin-bound oligonucleotide traces. As shown
in Fig. 1(b), the intensity-weighted segment distribution
S�z� from an end-tethered � DNA molecule exhibits a
strongly asymmetric shape, quite unlike the symmetric
profiles of colloidal spheres. At small distances z from
the surface, the fluorescence intensity increases from
very small values to a pronounced maximum located at
z � 0:8 �m. At larger distances, the segment distribution
shows a broad, markedly non-Gaussian tail. Indeed, small,
albeit significant fluorescence signal from the polymer can
still be detected at distances of 4 �m which corresponds to
about 5Rg for this chain length.
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RG theory and simulations predict that the segment
distribution of an isolated end-tethered polymer in a good
solvent follows a scaling form ~��z=Rg�, the scaling factor
being the radius of gyration Rg of the free (untethered)
chain [7,8]. In order to test this prediction, we measured the
intensity-weighted segment distribution S�z� for end-
tethered DNA with contour lengths 8:2 �m � L �
59:4 �m, corresponding to chains with 20 040 � N0 �
145 506 basepairs [12].

Lacking a closed-form expression for ��z� for general
values of the excluded-volume parameter [7], we deter-
mine the radius of gyration Rg using the expression

��z� �
1:786�N

Rg

�
z
Rg

�
�0:3

�
erfc

�
z

2Rg

�
� erfc

�
z
Rg
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(1)

proposed by Kreer et al. [8] to interpolate between the
behavior of end-tethered excluded-volume chains at small
and at large distances z. ��z� is related to the propagator of
the nth segment of the tethered chain, Gn�0; r� [14], by
��z� � �

R
dxdy

R
N
0 dnGn�0; r�. Equation (1) was shown

to be in excellent agreement with RG theory and simula-
tions and allows us to cast all excluded-volume effects into
the radius of gyration Rg of the free chain. We measure Rg

by fitting the convolution product B
R
zmax
zmin

��z� z0;Rg� �

Kz�z0�dz0 to the measured S�z� [13], where B is a free
parameter and Kz�z� is the measured longitudinal point-
spread function [15].

Figure 2 shows that when the intensity-weighted seg-
ment distributions S�z� (normalized to unit area) are plot-
ted vs the rescaled distance z=Rg, the data for the different
contour lengths superimpose onto a master curve. While
the data of the shortest chains (N0 � 20 040, L � 8:2 �m)
show some deviations from scaling, possibly due to the
limited resolution of the microscope, the scaling of the
distributions of the longer chains provide quantitative evi-
dence that the profiles are governed by a common chain
statistics.
FIG. 1 (color). (a) Cuts through the
denoised and background-corrected fluo-
rescence signal R�r� of an end-tethered �
DNA molecule at different heights z
from the substrate. (b) Intensity-
weighted segment distribution S�z� of
isolated end-tethered � DNA with con-
tour length L � 19:8 �m, as a function
of the distance z from the substrate. Error
bars represent the standard deviation of
the measurements over 10 molecules. A
common z axis was obtained by binning
the z axes from the 10 data sets, using a
binning width of 0:1 �m. The extension
of the profile to negative values of z is
due to the finite resolution of the micro-
scope.

1-2



10-2

10-1

100

-2 -1 0 1 2 3 4
scaled distance from surface /z Rg

no
rm

al
iz

ed
(

)
S

z

FIG. 2. Intensity-weighted segment distribution S�z�, normal-
ized by

R
zmax
zmin

S�z�dz, of end-tethered DNA as a function of the
reduced distance z=Rg from the substrate. Symbols: data for
DNA with N0 � 20 040 (triangles), N0 � 38 416 (squares),
N0 � 48 502 (circles), N0 � 97 004 (crosses), and N0 �
145 507 (diamonds). Scaling factors Rg are determined from a
fit of Eq. (1) to the data (see text). The full line is the scaling
prediction Eq. (1) for ~��z=Rg�, convolved with the experimental
resolution function Kz�z�.
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In order to test whether the values ofRg determined from
the segment distributions are consistent with those ex-
pected for free excluded-volume chains, we measure Rg

for the contour lengths 15:4 �m � L � 59:4 �m which
show good scaling with the excluded-volume theory
Eq. (1) [16]. Figure 3 shows a power law scaling Rg �

L� with an exponent � � 0:57� 0:05 which is in very
good agreement with the critical exponent � � 0:588 for
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FIG. 3. Radius of gyration Rg determined from the measured
intensity-weighted segment distributions S�z�, as a function of
the contour length L of DNA labeled with YOYO-1. Error bars
represent the standard deviation of the measurements over 10
molecules. The line is a nonlinear least-squares fit of the power
law Rg � BL� to the data, with the best-fit exponent � � 0:57�
0:05. The contour length L was calculated from the number of
basepairs, N0, and the basepair rise a � 3:4 �A by the relation
L � 1:2N0a, the prefactor 1.2 taking into account the increase of
the basepair rise upon YOYO-1 binding [16].
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excluded-volume interactions. This provides clear evi-
dence that the excluded-volume interactions are indeed
governing the structure of isolated DNA chains in water
at a pH and salinity compatible with biological function.

Similar to the segment distribution function ��z�,
the end-segment distribution function �e�z� �
�
R
dxdyGN�0; r� of end-tethered chains in a good solvent

is also expected to follow a scaling behavior. Closed-form
expressions for �e�z� based on RG calculations or simula-
tions are not known, but the similarity of the values of Rg

obtained by analyzing our data with and without taking
account of excluded-volume leads us to expect that the
expression

�e�z� / exp
�
�

�
z� z0

2Rg;e

�
2
�
� exp

�
�

�
z� z0

2Rg;e

�
2
�

(2)

for the end-segment distribution of an ideal, end-tethered
chain [20] should yield values for the scaling factors Rg;e

that are similar to those expected for expanded chains.
To answer the question whether the scaling factor Rg;e is

identical with the radius of gyration Rg obtained from ��z�,
we measured the intensity-weighted end-segment distribu-
tion Se�z�, using end-tethered �DNA to whose second, free
end an avidin-coated fluorescent bead with diameter
100 nm (TransFluoSpheres, Molecular Probes) had been
attached [13] (see Fig. 4). In order to distinguish the signal
from the bead from that of the inner chain segments, the
fluorescence of the bead is measured at � � 605 nm where
the fluorescence of DNA-bound YOYO-1 is very weak.

We use the expression for the ideal chain, Eq. (2), to
determine the radius of gyration Rg;e from the measured
end-segment profiles Se�z�, approximating z0, the position
of the first monomer, by the persistence length p. Choosing
z0 � 53 nm [17] results in a value Rg;e � 0:77 �m for �
DNA with 0:2 YOYO-1=bp dye loading which is in good
agreement with the value Rg � 0:8� 0:1 �m obtained
from the analysis of S�z�. In the range of chain lengths
studied here, the exact value of z0 does not affect the
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FIG. 4. Intensity-weighted end-segment distribution Se�z� of a
� DNA mushroom, as a function of the distance z from the
substrate. Error bars represent the standard deviation over 3
molecules. (a) DNA labeled with 0:2 YOYO-1=bp. (b) Un-
labeled DNA. Lines: Eq. (2) convolved with the experimental
resolution function Kz�z� for (a) YOYO-1-labeled DNA (Rg �

0:77 �m) and (b) unlabeled DNA (Rg � 0:66 �m).
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numerical values of Rg;e. In contrast, the analysis of Se�z�
from unlabeled � DNA yields a reduced value Rg;e �

0:66 �m. This value is in excellent agreement with the
radius of gyration Rg;f � 0:7 �m obtained from static light
scattering on free � DNA [21]. While independent mea-
surements of Rg of YOYO-1-labeled DNA are not avail-
able, our results provide strong indications that the radius
of gyration of tethered excluded-volume chains is identical
with that of free chains.

The increase in Rg by 17% induced by YOYO-1 binding
should, according to the scaling expression for the radius of
gyration of free excluded-volume chains [22]

Rg;f � L3=5a1=5p1=5�1=5; (3)

originate mainly in the increase of the contour length due
to binding, and much less to changes in the persistence
length p, basepair step a, and solvent quality factor �.
However, the increase in the contour length by 20% alone
would increase Rg by only 11%. Using a value for the
persistence length p � 77 nm for YOYO-1-labeled DNA
[23] (assuming an increase of p linear with dye loading)
and an increase of the average basepair rise a to 4.1 Å,
Eq. (3) predicts a reduction of the solvent quality factor �
by approximately 30% upon YOYO-1 binding. This reduc-
tion of � might originate in the reduction of DNA surface
charge upon binding of YOYO-1, resulting in an effective
increase of the theta temperature.

In summary, the equilibrium segment distributions mea-
sured in this work provide the first direct experimental test
of theoretical predictions for the conformation of end-
tethered polymers in a good solvent. The combination of
confocal fluorescence microscopy with its ability to pro-
vide 3-dimensional, high-resolution images, and long-
chain, monodisperse DNA molecules that can be labeled
selectively could open up new avenues for the study of
adhesion and friction phenomena in polymer solutions,
such as wall-slip and interfacial rheology.
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[20] Y. Lépine and A. Caillé, Can. J. Phys. 56, 403 (1978).
[21] J. R. Dawson and J. A. Harpst, Biopolymers 10, 2499

(1971).
[22] D. W. Schaefer, J.-F. Joanny, and P. Pincus, Macro-

molecules 13, 1280 (1980).
[23] S. R. Quake, H. Babcock, and S. Chu, Nature (London)

388, 151 (1997).
1-4


