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We show that the doping-controlled superconductor-insulator transition (SIT) in a high critical
temperature cuprate system (Bi,Sr,_,La,CaCu,0g. ) exhibits a fundamentally different behavior than
is expected from conventional SIT. At the critical doping, the sheet resistance seems to diverge in the zero-
temperature limit. Above the critical doping, the transport is universally scaled by a two-component
conductance model. Below, it continuously evolves from weakly to strongly insulating behavior. The two-
component conductance model suggests that a collective electronic phase-separation mechanism may be

responsible for this unconventional SIT behavior.
DOI: 10.1103/PhysRevLett.96.107003

Since the late 1980s, the superconductor-insulator
transition has been intensively studied both experimentally
[1-4] and theoretically [5—9] in homogeneously disor-
dered two-dimensional (2D) thin films. These studies sug-
gest that there exists a defect-scattering dominated metallic
(that is, resistance being temperature-independent) state
with a finite zero-temperature critical sheet resistance at
the transition from superconducting to insulating behav-
ior. Samples with sheet resistance less than this critical
value are superconducting as T — 0, otherwise they are
insulating.

High-T, cuprates (HTCs) are a quasi-2D system, and
magnetic field [10,11] or doping control [12—-14] can con-
tinuously transform superconducting cuprates into insula-
tors as in the conventional SIT. In the case of doping-
controlled SIT, there exists a common feature for all cup-
rates in the temperature dependence of the in-plane resist-
ance. For doping levels much higher than the critical
doping, the resistance monotonically decreases as a func-
tion of decreasing temperature and drops to zero below a
superconducting transition temperature. For doping levels
below the critical doping, the resistance first decreases as a
function of decreasing temperature at high temperatures,
reaches a minimum at an intermediate temperature, and
then it starts to increase as the temperature is further
reduced. However, for a small range of doping levels just
above the critical doping, the temperature dependence of
the resistance is composed of three regions [10—13]. As a
function of decreasing temperature, the resistance first
decreases at high temperatures, reaches a minimum at an
intermediate temperature, starts to increase at lower tem-
peratures until it reaches a local maximum, and then it
drops to zero resistance below the superconducting tran-
sition temperature. Although such a reentrant behavior is
universally observed in almost all underdoped cuprates
[10-13], its origin or significance has not attracted much
attention so far.

In this Letter, however, we report the results of a doping-
controlled SIT study with an unprecedented level of detail,
and we find that important physics has been hidden in this
phenomenon. First of all, the sheet resistance tends to
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diverge as T — 0 at the critical doping, contrary to the
common notion of finite critical sheet resistance not only in
conventional disordered metals [1-4] but also in cuprates
[12,13]. Above the critical doping, the reentrant behavior is
well described by a two-component scaling function com-
posed of a weakly insulating phase and a superconductive-
fluctuating phase. This model is consistent with the widely
predicted and observed electronic phase-separation mecha-
nism driven by carrier-carrier correlations [15-19]. We
attribute the observed divergence of the critical sheet re-
sistance to this phase-separation phenomenon. Below the
critical doping, the transport continuously evolves into
two-dimensional variable-range hopping.

For a detailed doping-controlled SIT study, we have
grown a 40 molecular layer of Bi,Sr; s¢Lag 44CaCu,0g, 5
(Bi2212:La = 0.44) film by ozone-assisted molecular
beam epitaxy and varied its doping level in the vicinity
of the SIT in small steps (smaller than 0.001 holes per Cu in
doping) using precise and reversible oxygen control [20].
Each curve in Fig. 1 is obtained after a few minutes of
either vacuum (~10~8 Torr) or ozone (~107° Torr) an-
nealing at ~400 °C. Figure 1 shows sheet resistance (Ry)
defined per CuO, bilayer versus temperature (7)) curves
very near the SIT. Overall, there exist two temperature
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FIG. 1 (color online). Doping-controlled SIT over a very small
range of doping levels. (a) and (b) are the same data plotted on
different horizontal scales. Note that each curve is indexed by a
number 1 through 13 in the order of increasing doping.
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regions in Fig. 1(a). Each curve reaches a local minimum at
a characteristic temperature 7T, near 80 K. Above T ;,, all
the curves exhibit metallic behavior (dR/dT > 0), and
doping simply provides a temperature-independent shift
with respect to one another. However, below T, all the
curves switch to an insulating behavior (dR/dT < 0), di-
verging away from each other as temperature decreases.

When the temperature is further reduced, the tempera-
ture dependence of the resistance either switches to a
metallic behavior (dR/dT > 0) when the doping exceeds
a critical value or remains insulating. This is more easily
seen in Fig. 1(b) where we plot resistance versus log7. We
interpret the change to metallic behavior as the onset of
superconducting fluctuations and expect these samples will
eventually become superconducting at low temperatures
since they are obtained by incrementally reducing the dop-
ing level of a sample which shows a superconducting tran-
sition above 4.2 K. The samples which exhibit supercon-
ducting fluctuations show a resistance peak R, at a tem-
perature 7', below which the resistance drops. Conversely,
samples which do not show a peak in resistance are on the
insulating side of the SIT.

In conventional superconductors, the temperature de-
pendence of resistance just above the superconduct-
ing transition temperature is generally flat due to
temperature-independent defect scattering [1,4]. How-
ever, emergence of a superconducting transition from an
insulating temperature dependence, which we call reen-
trant behavior, has been observed in granular superconduc-
tors, where superconducting islands are embedded in an
insulating background [21-23]. In such a case, even when
the high-temperature dependence shows insulating behav-
ior due to Coulomb charging energy, if the intergrain
tunneling energy and the Josephson coupling energy over-
come the Coulomb energy at reduced temperatures, a
superconducting transition can occur from an insulating
normal phase. We propose that the insulating normal-state
temperature dependence, which we see here even in super-
conducting samples, is of a similar origin. Although HTCs
are structurally homogeneous, theories have predicted that
hole carriers may segregate into hole-rich and hole-poor
islands at low doping due to strong carrier-carrier correla-
tion effect [24—27], and scanning-tunneling experiments
have verified that such granular electronic states prevail in
underdoped HTCs [18,19].

According to this phase-separation scenario, the reen-
trant behavior observed for doping levels above the critical
value can be qualitatively understood. At temperatures
above Ty, strong thermal fluctuations wash out any
phase-separation mechanism, leaving only metallic behav-
ior. Below T},;;,, however, phase separation occurs such that
hole-rich (presumably superconducting) islands are
formed inside a hole-poor (presumably insulating) back-
ground. In this case, the resistance is dominated by the
insulating background until superconducting islands start
to couple with each other at lower temperatures, ultimately

giving rise to a global superconducting transition.
Although such reentrant behavior is universally observed
in almost all underdoped HTC systems [10-13,28], its
origin has not been well known. Below, using a two-
component conductance model, we present a quantitative
analysis supporting the phase-separation as the main
mechanism behind this reentrant behavior.

A key finding of our work is that the bottom 8 curves
(curves 6 through 13) from Fig. 1(b), which show resist-
ance peaks above 4.2 K, can be rescaled by dividing the
temperature by 7', and the resistance by R,. When this is
done, the low-temperature parts of the curves overlap
nicely as shown in Fig. 2(a). This suggests that there exists
a single scaling function r = r(f), where r = R/R,, and
t = T/T,, which describes the transition from insulating to
superconducting temperature dependence for all of the
superconducting curves. One can find a well-fitting scaling
function, r(¢), using a simple two-component conductance
model, where the total conductance, g(t) = r(t)~!, is due
to two contributions and is given by g(r) = Ar? + Bti—‘t
withA = 0.881,¢ = 0.145,B = 1.72,and 1.(= T./T,) =
0.065 found as the parameters leading to the best fit of the
data. Here T, represents the superconducting critical tem-
perature, below which the resistance of the sample turns
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FIG. 2 (color online). Scaling of superconducting curves. Each
index represents the corresponding curve from Fig. 1(b).
(a) Rescaled plot of curves 6—-13 from Fig. 1(b). (b) The two-
component scaling function plotted together with curves 3—13.
Curves 6—13 are used to obtain the scaling function. Curves
4-5 are fit to the obtained scaling function with 7, and R,
as the fitting parameters. As for curve 3, any choice of T,
below ~0.5 K gives reasonably good fitting; three curves
with T, = 0.1 K, 0.01 K, and 0.001 K are shown from left to
right as examples. (¢c) R, vs T, for the 10 superconducting
curves (4-13). The solid line represents the best fitting for the
8 measured data points (curves 6—13), which corresponds to
R, = 1.72Tp_0‘149. (d) T, vs doping. Conductance at 150 K is
also shown on the top axis. The solid line, T, = 4.02 X 10° X
(d — d.)"8, is the best fitting for d > d,.
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zero. Since g(1) = 1 and g'(1) = 0 by the definition of T,
among the four parameters only two (for example, ¢ and
t.) are independent, and the other two can be obtained from
A=[1+¢(1—1)]"and B = Ag(1 — t.)%. The two in-
dependent model parameters, ¢ and ¢,., determine the rela-
tive insulating and superconductive-fluctuating transport
contributions, respectively, as described below.

Both terms of this two-component conductance formula
correspond to physically identifiable conductance channels
and this is consistent with the above-mentioned phase-
separation mechanism. The first term represents the con-
ductance of 2D weakly insulating normal carriers from the
hole-poor background, while the second is due to the
conductance of fluctuating superconducting pairs from
the hole-rich islands, similar in form to the 2D supercon-
ducting fluctuations treated by Aslamasov and Larkin (AL)
[29]. In AL theory, the fluctuation contribution, however, is
not referenced to any material property and is scaled only
by 4¢*/h. In our case, since 1/R = g(1)/R,,, the contribu-
tion of this term to the overall conductance is scaled by
1/R,, which is strongly dependent on doping.

The two-component scaling function determined from
curves 613 in Fig. 2(a) is plotted in Fig. 2(b) together with
curves 3—13. Curves 4 and 5 can be nicely fit to the scaling
function with 7', values less than 4.2 K and corresponding
R, values. Curves 1 and 2 cannot be fit to the scaling
function for any choice of T), and R,, values. Curve 3 can
be scaled with a range of R, and T, pairs in which T, can
take any values between 0 and ~0.5 K. In order to show
this, we have selected three representative values, 0.1 K,
0.01 K, and 0.001 K for T, and presented the correspond-
ing fitting curves in Fig. 2(b). All three curves are equally
well fit to the scaling function even if their 7, values are
orders of magnitude different with one another. This means
that the doping level, d, in curve 3 is very near the 7. = 0
transition value, but it is impossible to know whether it is
exactly zero or just very nearly zero.

The temperature dependence corresponding to the criti-
cal doping, d,., can be obtained by taking the limit of the
scaling function as T, o« T, — 0, which corresponds to
R = 1.14R (T,/T)*'*. Once the relationship between
R, and T, is known, temperature dependence at critical
doping can be determined. Our two-component conduc-
tance model does not give any a priori information about
how T, and R, are related, and they should be obtained
from R versus T curves. Figure 2(c) shows the result of
this, and we find R, = 1.72 X T, %1% as the best fit for the
8 data points (curves 6-13) of R, versus T,. Values of R,
and T, for the other two (curves 4 and 5) with 7, <4.2 K
are obtained by fitting the corresponding R versus T curves
to the scaling function and are plotted for comparison as
well. Using this relationship, the temperature dependence
at critical doping reduces to R = 1.96 X T~*T% where
a = —0.004.

The exact value of « is significant because @ = 0 im-
plies that there exists an asymptotic critical-doping tem-

perature dependence to which R(T) tends as the doping
approaches d, from the superconducting side. Since the
error in determining the exponent is close to 0.01, we
believe the obtained value is effectively zero. If & were
not zero, then as 7, — 0, R would tend either toward zero
or infinity for all temperatures depending on the sign of «,
either of which is unphysical. Since we find a ~ 0, we
believe our scaling function and empirical relationship
between R, and T, provide a well-behaved limiting form
as T, goes to zero.

This result is interesting because it suggests that, for the
doping-controlled SIT, the critical temperature dependence
is insulating (dR/dT < 0), and a zero-temperature critical
sheet resistance does not exist. This is in direct contrast to
the conventional picture of the SIT, according to which a
temperature-independent and finite sheet resistance exists
at a critical value of the control parameter [1-4,12,13].
Although this conclusion needs to be verified by further
studies at lower temperatures, we believe that it would
remain unchanged, because the transport data do not
show any sign of deviation from the two-component scal-
ing form in the temperature range we have studied.

Making use of the normal-state conductance, G, which
is monotonically related to the doping level as shown in
Fig. 1, it is possible to estimate the doping level, d, of each
curve, since within a reasonable approximation G must be
proportional to d. Assuming that d of curve 3 is the critical
value, d, and taking 0.05 hole/Cu, the widely accepted
value for the critical doping [30], as the critical value, we
have converted G at 150 K into d in Fig. 2(d) and presented
T, as a function of the doping level. Since T.(¢ T,) is the
energy scale that governs transport on the superconducting
side and renormalization scaling predicts T, o |d — d|**
[6], a power-law relationship is expected between T, and
doping. From Fig. 2(d), the estimated critical exponent is
vz =18 *=0.3.
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FIG. 3 (color online). Ry vs 1/T'/3 for insulating doping
levels. Linearity in this plot implies 2D-VRH. Curves 1 and 2
from Fig. 1 are reproduced for comparison. Inset shows how
curve a compares with other curves from Fig. 1.
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FIG. 4 (color online). (7, d) phase diagram near the critical
doping. T, and Ty, are determined by the resistance data, and
T, is evaluated as 0.065 X T, according to the scaling analysis.
Fitting curves for each of these crossover temperatures are
plotted as well. Unlike other crossover temperatures, 7; is only
marginally defined in our experiment.

Transport on the insulating side of the SIT is shown in
Fig. 3, where curves 1 and 2 from Fig. 1 are reproduced.
We also measured the temperature dependence of the sheet
resistance for a barely insulating sample between 2 and
0.2 K; this is labeled curve a. For curves a and b, the
resistance is well described by 2D variable-range hopping
(VRH), where R(T) = Ryexp(T,/T)'* [31,32]. Here
Ty = 10/kpé>N(Ef) where N(Ey) is the density of states
at the Fermi level, and ¢ is the characteristic size of the
localized states between which hopping occurs. In our data
T, tends to zero as the doping level approaches the critical
doping from the insulating side. Curve 2 is better fit by a
power law within the measured temperature range. Curve 1
tends to deviate from a high-temperature power law toward
a low-temperature 2D-VRH dependence. Even curve 2
may take a 2D-VRH form at very low temperatures. This
observation suggests the existence of a crossover tem-
perature, 7;, at which a weakly insulating (power-law-
dependent) high-temperature behavior transforms into a
strongly (quasiexponential such as 2D-VRH) insulating
low-temperature one. In the other extreme, when 7, gets
very large and £ very small, the transport starts to diverge
faster than is expected by VRH, which is the case for
curves ¢, d, and e.

All the above observations can be summarized into a
(T, d) phase diagram shown in Fig. 4. It is composed of
metallic, insulating, superconductive fluctuating (i.e., local
superconducting), and global superconducting regions di-
vided by three crossover temperatures, Tpin, T, and 7.
The insulating region can again be divided into weakly and
strongly insulating regions by 7. Especially, our analysis
suggests that the phase separation phenomenon results in
the reentrant behavior for 0.050 ~ 0.058 (hole/Cu) doping
levels and the weakly insulating 7 — O behavior at the
critical doping, 0.050 (hole/Cu).
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