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Helical Liquid and the Edge of Quantum Spin Hall Systems

Congjun Wu,1,2 B. Andrei Bernevig,1 and Shou-Cheng Zhang1

1Department of Physics, Stanford University, Stanford, California 94305, USA
2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA

(Received 11 August 2005; published 14 March 2006)
0031-9007=
The edge states of the recently proposed quantum spin Hall systems constitute a new symmetry class of
one-dimensional liquids dubbed the ‘‘helical liquid,’’ where the spin orientation is determined by the
direction of electron motion. We prove a no-go theorem which states that a helical liquid with an odd
number of components cannot be constructed in a purely 1D lattice system. In a helical liquid with an odd
number of components, a uniform gap in the ground state can appear when the time-reversal symmetry is
spontaneously broken by interactions. On the other hand, a correlated two-particle backscattering term by
an impurity can become relevant while keeping the time-reversal invariance.
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The field of spintronics is motivated largely by the
possibility of low power logic devices designed using the
spin degree of freedom of the electron [1]. Recently, it has
been proposed that, in semiconductor materials with spin-
orbit (SO) coupling, a dissipationless spin current can be
induced by an electric field [2]. The theoretical predic-
tion of this ‘‘intrinsic spin Hall effect’’ (SHE) [2,3] has
stimulated tremendous research activity both theoretical
and experimental. On the theoretical side, it has been
shown that the vertex correction due to impurity scattering
vanishes in the p-doped Luttinger and Rashba models
[4,5], while it actually cancels the intrinsic spin Hall effect
in the n-doped Rashba model [6]. Recent experimental
results in the GaAs system with both electron and hole
doping [7,8] are consistent with the existence of a spin
Hall effect, although more work is necessary to determine
the intrinsic versus extrinsic nature of the observed
effect.

However, the electric field in the SHE systems still
generates the ordinary Ohmic dissipation in the charge
channel of a doped semiconductor. This issue motivated
the proposal of a spin Hall insulator [9], where the spin
current is not accompanied by the charge current. More
recently, the quantum SHE (QSHE) has been proposed
in systems with [10] or without Landau levels [11–14].
The QSHE has as a central concept the existence of a
bulk gap and gapless edge states in a time-reversal (TR)
invariant system with SO coupling. In the ideal QSHE, the
left movers on the edge are correlated with down spin # ,
the right movers have up spin " , and the transport is
quantized. We dub the edge states of the QSHE a ‘‘helical
liquid,’’ which describes the correlation between the spin
and the momentum. As spin is not conserved, the extra SO
interactions (e.g., Rashba) change the quantized nature of
the ideal system. However, the edge transport turns out to
be quite robust: As long as the bulk gap is not closed,
numerical results find that the spin Hall conductance re-
mains near the quantized value, being rather insensitive to
disorder scattering, until the energy gap collapses with
increasing SO coupling [15].
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The helical liquid constitutes a new symmetry class of
1D liquids; unlike the chiral Luttinger liquid, it does not
break TR invariance, and, unlike the usual spinless
Luttinger liquid, whose TR transformation satisfies T2 �
1, the TR transformation of the helical liquid satisfies T2 �
�1. Unlike the spinful Luttinger liquid, the spinful
Luttinger liquid has to have an even number of branches
of TR pairs, while the helical liquid can have an odd
number of branches of TR pairs. We shall adopt the termi-
nology that an n-component helical liquid contains n TR
pairs of fermions. Recently, Kane and Mele [16] pointed
out that helical liquids with an even or an odd number of
components are topologically distinct and are character-
ized by a Z2 symmetry in the noninteracting case. This
work shows that, in the presence of strong interactions, no
strict topological distinctions between the even and odd
helical liquids exist, while important quantitative differ-
ences do remain.

In this Letter, we analyze the properties of this helical
liquid. We write down the lattice Hamiltonian and show
that the fermion doubling theorem proves that the helical
liquid with an odd number of components cannot be con-
structed in purely 1D lattices and, hence, must arise as an
edge effect of a bulk 2D lattice. In that sense, such a 1D
helical liquid must be a ‘‘holographic liquid.’’ We then
analyze the effects of TR invariant interactions. The um-
klapp term can open up a gap but at the cost of sponta-
neously breaking the TR symmetry. Disordered two-
particle backscattering also induces a glasslike TR break-
ing ground state. Fortunately, both cases require extreme
repulsive interactions which are unlikely to be experimen-
tally realized.

We begin with the QSHE in the Landau level picture
[10], which can be understood as two opposing effective
orbital magnetic fields �B, realized through a special
position-dependent SO coupling, acting on spin " and #
electrons. On a lattice �x; y� � �m; n�, with an edge on the x
axis, and in the Landau gauge simulated by a linear strain
gradient in a sample grown on the �110� direction [10], the
Schrödinger equation now becomes
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E m�ky� � �tx� m�1�ky� �  m�1�ky�� �
2ty cos�ky � 2�m�� 2� sin�ky�

2� sin�ky� 2ty cos�ky � 2�m��

� �
 m�ky�; (1)
with  m � � m;";  m;#�T a two-component spinor, flux per
plaquette � � p=q, with p, q relatively prime integers. An
extra Rashba SO coupling interaction �2�ky�x which
mixes the two spins has been added. By using the transfer
matrix formalism [17], we can, however, prove that, for
�	 tx; ty and to order �, the edge states do not differ in
eigenvalues from the � � 0 states. There are q� 1 edge
states, and each of them is doubly degenerate. The degen-
eracy is removed to order �2.

A generalization of the no-go theorem for chiral fermi-
ons in lattice models [18,19] can be used to prove that it is
impossible to construct a purely 1D lattice model of the
helical liquid with an odd number of components [10,12].
For simplicity, we consider the one-component model with
TR symmetry, i.e., two states with orthogonal spin con-
figurations for each momentum k in the Brillouin zone
(BZ). The Kramers theorem associated with T2 � �1
ensures that eigenstates with k � 0 or � are doubly degen-
erate. Their energies are denoted by E0 and E1, respec-
tively. Without loss of generality, we assume E1 >E0. TR
symmetry also ensures E��k� � E ����k� for Kramers dou-
blets with opposite momenta and orthogonal spins. As a
result, two dispersion curves start from k � �� and con-
verge at k � 0 in the left half of the BZ. In the right half of
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FIG. 1. The band structure in 1D lattice systems with time-
reversal symmetry. Even numbers of Kramers doublets appear at
a given energy except at the extremum points.
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the BZ, the curves are symmetric to those in the left half by
a mirror reflection. If an energy E satisfies E0 <E< E1, it
crosses each branch in the left half of the BZ an odd
number of times. On the other hand, an energy with E>
E1 or E< E0 crosses each branch in the left half of the BZ
an even number of times. Thus, for any general energy E,
unless it is a local energy maximum or minimum, the total
number of crossing points is even in the left half of the BZ
as shown in Fig. 1. Thus, the purely 1D band structure
generally gives the helical liquid with an even number of
components. This result can be straightforwardly general-
ized to the multiband case. However, the helical liquid with
an odd number of components can appear in the edge of a
2D system, because the edge states do not necessarily
cover the entire BZ.

TR invariance with T2 � �1 imposes a strong con-
straint on the correlation function between Kramers pairs.
Regardless of interactions and disorder, the Green’s func-
tion is G�~rt #; ~rt0 "� � h "� ~rt� 

y
# � ~r
0t0�i � 0, where h i

means thermal average [20]. To generalize this result to
multiple pairs, we define a set of fermion annihilation

operators of Kramers pairs as  ̂i and �̂ i (i � 1; 2; . . . ; n)

which satisfy T�1 ̂iT � �̂ i and T�1 �̂ iT � � ̂i. Their
2n-point correlation functions are defined as
Gn�t1; t2; . . . ; tn; t0n; . . . ; t02; t
0
1� � h ̂1�t1� ̂2�t2� . . .  ̂n�tn� �̂ 

y
n �t
0
n� . . . �̂ 

y
2 �t
0
2�

�̂ 
y
1 �t
0
1�i: (2)
T2 � �1 ensures that Gn�t1; t2; . . . ; tn; t0n; . . . ; t02; t
0
1� �

���nG��t01;�t
0
2 . . .� t0n;�tn; . . .� t2;�t1�. Combining

this with the time translational symmetry, we obtain

Gn�t; t; . . . ; t; 0; 0; . . . ; 0� � 0 �n is odd�; (3)

regardless of interactions and disorder. With the interpre-
tation of  and � as the right and left movers, the obser-
vation of Kane and Mele [16] that the single-particle
backscattering is forbidden is still correct even in the
presence of interactions. However, this does not neces-
sarily mean that the system is gapless. In fact, a two-
particle correlated backscattering is allowed as

G04�t; t; 0; 0� � G4�t; t; 0; 0� � h ̂1�t� �̂ 
y
2 �0�ih ̂2�t� �̂ 

y
1 �0�i;

(4)
which effectively describes the propagation of a composite
boson and can have nonzero values.

Next we discuss the interaction effects in the one-
component model. For simplicity, we consider the band
structure with conserved sz [10,12,13]. After linearizing
the spectra around the Fermi points, we arrive at the non-
interacting part as

H0 � vf
Z
dx� yR"i@x R" �  

y
L#i@x L#�; (5)

where the right (left) movers  R"� L#� carry spin up
(down), respectively, and vf is the Fermi velocity. A
single-particle backscattering term of the form O1 �

 yR" L# � H:c: or O2 � i� yR" L# � H:c:�, which opens up
a mass gap in the spinless Luttinger liquid, is not allowed
here by virtue of being TR odd. In contrast, for an even
number of Kramers pairs  iR";  iL# (i � 1–n), it is easy to
write down a TR invariant mass term. For n � 2, a possible
term is  y1R" 2L# �  

y
1R# 2R" � H:c: The Hamiltonian

equation (5) is also different from that of the Luttinger
liquid with the Rashba SO coupling [21]. In the latter case,
there are still two branches of Kramers pairs.

Only two TR invariant nonchiral interactions are al-
lowed: the forward and umklapp scatterings

Hfw � g
Z
dx yR" R" 

y
L# L#; (6)
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FIG. 2. (a) The two-particle correlated backscattering process
at K < 1=4 divides the line into two half-lines. (b) The instanton
process of O1;2�0; �� restores the TR symmetry.
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Hum � gu
Z
dxe�i4kfx yR"�x� 

y
R"�x� a�


  L#�x� a� L#�x� � H:c:; (7)

where a point splitting with the lattice constant a is per-
formed in the umklapp term. The chiral interaction terms
only renormalize the Fermi velocity and, thus, are ignored.
The umklapp term flips two spins simultaneously, which
can be microscopically obtained from anisotropic spin
interactions such as

P
hijisx�i�sx�j� � sy�i�sy�j� orP

hijisx�i�sy�j� � sy�i�sx�j�.
It is well known that the forward scattering term

gives the nontrivial Luttinger parameter through K ������������������������������������������
�vf � g�=�vf � g�

q
but still keeps the system gapless.

Only the umklapp term has the potential to open up the gap
at commensurate filling kf � �=2. The standard boson-
ized Hamiltonian reads

H�
Z
dx
v
2

�
1

K
�@x��

2�K�@x��
2

�
�
gucos

���������
16�
p

�

2��a�2
; (8)

where v �
�����������������
v2
f � g

2
q

is the renormalized velocity; � �

�R ��L and � � �R ��L, respectively. � is also a
compact variable with a period of

����
�
p

. The standard renor-
malization group (RG) analysis shows that the umklapp
term becomes relevant at Kc < 1=2 with a pinned value of
�. Consequently, a gap � � a�1�gu�1=2�4K opens, and the
spin transport is blocked. The mass order parameters O1;2,
whose bosonized forms are O1 � �i�R�L=2�a� sin

�������
4�
p

�
and O2 � �i�R�L=2�a� cos

�������
4�
p

�, are odd under TR
transformation. At gu < 0, � is pinned at either 0 or����
�
p

=2; thus, the O2 order is Ising-like. At T � 0 K, the
system is in the Ising-ordered phase; thus, TR symmetry is
spontaneously broken. On the other hand, when 0< T 	
�, O2 is disordered in 1D; thus, the gap remains and TR
symmetry is restored by thermal fluctuations. Similar rea-
soning applies to the case of gu > 0 where O1 is the order
parameter.

Now we consider the case that the umklapp term exists
only in one single bond. It then behaves as an impurity-
induced two-particle correlated backscattering term

H0bs �
Z
dx��x�

gu
2��a�2

cos
���������
16�
p

��x�; (9)

as depicted in Fig. 2(a). This boundary sine-Gordon (BSG)
term was studied in Ref. [22]. It can be reduced to a single-
particle problem by integrating out the boson fields� away
from x � 0, whose effective action for ��x � 0; �� is
equivalent to a 1D classical Coulomb plasma problem
[22]. The RG analysis shows that the BSG term becomes
relevant at K < 1=4. In this case, the 1D line is broken into
two separated half-lines; thus, it is insulating for charge
transport along the line. However, it remains gapless and
can support spin transport. Because the BSG term exists
only in a small region, TR symmetry cannot be sponta-
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neously broken. Without loss of generality, we assume
gu ! �1 in the RG process; then Eq. (9) has two energy
minima ��0; �� � 0;

����
�
p

=2, which give O2��� the same
finite amplitude but with opposite signs. As a result, an
electron can be backscattered by flipping its spin. The
instanton events in Fig. 2(b), i.e., the tunneling processes
between these two classical minima, restore TR symmetry.
Similar reasoning also applies to the case of gu ! �1.

Now we discuss the two-particle backscattering due to
quenched disorder, described by the term

Hdis �
Z
dx

gu�x�

2��a�2
cos

���������
16�
p

���x; �� � ��x��; (10)

where the spatial distribution of scattering strength gu�x�
and phase ��x� are Gaussian random variables. The stan-
dard replica analysis shows that the disorder becomes
relevant at K < 3=8 [23,24]. Then in the ground state
O1;2�x� show a glassy behavior, which is disordered in the
spatial direction but static in the time direction. Thus, the
spin transport is blocked, and TR symmetry is again spon-
taneously broken at T � 0 K. Again at very low but finite
T, the system remains gapped with TR symmetry restored.

The conditions for the relevance of two-particle back-
scattering are K < 1=2 for the uniform umklapp scattering
andK < 3=8 for scattering due to quenched disorder. Since
the helical liquid could, in principle, open up a gap without
breaking the TR symmetry at very low temperatures, we
conclude that there is no strict topological distinction [16]
between the helical liquid with an even or odd number of
components in the presence of disorder and interactions.
However, for a reasonably weak interacting system, the
one-component helical liquid is expected to remain
gapless.

Next we consider the problem of magnetic impurities.
The Kondo coupling between the local moment and edge
states still keeps the TR invariance. It reads

HK �
Z
dx��x�

�
Jk
2
��� 

y
R" L# � �� 

y
L# R"�

� Jz�z� 
y
R" R" �  

y
L# L#�

�
; (11)

where �� � �x � i�y, and �z denotes the spin 1=2 local
moment. Jk describes the spin-flip process accompanied by
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FIG. 3. (a) The RG flow of the Kondo problem in the spin Hall
edge state. The antiferromagnetic FP (dashed line) describes the
formation of the Kondo singlet. The ferromagnetic FP (solid dot)
shows a nonzero critical value of Jz. (b) Kondo screening spin-
current vortex around the local moment.
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the single-particle backscattering between the left and right
channels, while Jz is the nonflipping process with forward
scattering of electrons. Combining Eq. (11) and the helical
liquid Hamiltonian equations (5) and (7) together, the
standard RG analysis [22,25] gives

dJz
d logL=a

� 2J2
k
;

dJk
d logL=a

� �1�K� 2Jz�Jk; (12)

where L is the infrared length scale. Equation (12) can be
integrated: J2

k
� �Jz � �K � 1�=2�2 � c (c: constant). A

nonzero value of K � 1 contributes to the RG equation at
the tree level due to the anomalous scaling dimension of
the backscattering term. Consequently, as shown in
Fig. 3(a), the RG flow pattern is shifted as a whole by an
amount �K � 1�=2 along the Jz direction compared to the
usual case [25]. The strong coupling antiferromagnetic
fixed point (FP) at Jz � Jk ! �1 still means the Kondo
singlet formation, while the ferromagnetic FP is located at
�Jz; Jk� � ��1� K�=2; 0�, and the Ising coupling cannot
induce backscattering. It is remarkable that, with the re-
pulsive forward scattering, i.e., K < 1, the Kondo singlet
can still form even with a weak ferromagnetic Kondo
coupling. After the formation of the Kondo singlet, it
behaves like a spinless impurity, which can cause only a
phase shift to the edge electrons.

The Kondo singlet in the spin Hall edge exhibits a new
feature different from that in the nonchiral systems.
According to Nozieres’s strong coupling picture [26], an
electron from the conduction band is bound around the
local moment to form a local singlet. However, the edge
electron here has only one helicity. Thus, the spin-flip
process inside the Kondo singlet is accompanied with the
backscattering of the edge electrons. As a result, the
screening electron is actually ‘‘circling’’ around the local
moment as depicted in Fig. 3(b). In realistic systems, the
width of the edge states is still finite. Thus, the Kondo
10640
screening cloud can be considered as a spin-current vortex,
and we speculate that its orbital angular momentum is
quantized.

In conclusion, we have shown that the edge states of the
recently proposed quantum spin Hall systems form a hel-
ical liquid, which is a new class different from the spinless
or chiral Luttinger liquid. We have shown that this liquid
with an odd number of components can arise only as the
edge of a 2D system, and we have analyzed its stability
under interactions, impurity scattering, and disorder. The
new feature of the Kondo singlet was also studied. While
there is no strict Z2 topological distinction between the
helical liquids with an even or odd number of components
in the presence of strong interactions, the latter is robust in
practice against disorder and interactions.
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Note added.—After the completion of our work, we
learned that the problem of two-particle scattering in a
helical liquid due to quenched disorder has also been
independently studied by Xu and Moore [24].
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