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Measurements of the moment of inertia by Kim and Chan have found that solid “He acts like a
supersolid at low temperatures. To understand the order in solid *He, we have used path integral
Monte Carlo simulations to calculate the off-diagonal long-range order (ODLRO) [equivalent to Bose-
Einstein condensation (BEC)]. We do not find ODLRO in a defect-free hep crystal of “*He at the melting
density. We discuss these results in relation to proposed quantum solid trial functions. We conclude that
the solid “He wave function has correlations which suppress both vacancies and BEC.
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Whether bulk solid has a region of its equilibrium phase
diagram with supersolid behavior has been of theoretical
interest [1-3] for many years. Recently, Kim and Chan [4]
have observed behavior similar to that of nonclassical
rotational inertia (NCRI) at temperatures below 0.2 K.
Analogous to behavior in a superfluid, NCRI would be
expected in a supersolid, a state of matter in which crys-
tallinity and superfluid behavior coexist. Two key theoreti-
cal quantities in establishing the order of a bosonic system
are the superfluid fraction [estimated [5] to vanish] and off-
diagonal long-range order (ODLRO) previously estimated
only by variational methods.

Off-diagonal order tells us whether atoms at one end of
the solid are in phase with atoms at the other end of the
solid. It is formally equivalent (via a Fourier transform) to a
nonzero condensate fraction or Bose-Einstein condensa-
tion (BEC). ODLRO would supply a mechanism for NCRI.
The converse of this does not follow, a counterexample
being 2D superfluidity, but all known superfluid systems in
three dimensions manifest both NCRI and ODLRO.
ODLRO [6] is a property of the single particle density
matrix:

n(r,r’; B) = %Z/drz...drne_ﬂEﬂlfa(r, ry...,T,)

X Wi, ry, ..., 1,), (1)

where ¥, and E, are the o™ eigenfunction and value of
the many body Hamiltonian, Z the partition function, V the
volume, and B = 1/kzT. A system is said to be Bose
condensed if an eigenvalue of the matrix n(r, r’) is propor-
tional to the number of atoms in the system in the thermo-
dynamic limit. In this Letter, we consider a translationally
invariant system in periodic boundary conditions. This
implies that n(r, r') only depends on Ar =r — r’ and its
eigenfunctions are momentum states. Considering the oc-
cupation of the k = 0 momentum state, the condensate
fraction is
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1
ny = V2 ]drdr’n(r, r). (2)

A system has ODLRO fif, in the thermodynamic limit, the
condensate fraction is greater than 0. This is equivalent to
ng = limjapj—en(Ar) > 0.

Reatto [7] showed that a pair-product (Jastrow) trial
wave function (JWF), commonly used for liquid “He, has
ODLRO. This trial function has the form W ,(R)=
exp[—>;<;u(r;;)], where u(r;;) is fixed by minimizing
the variational estimate of the ground state energy. By
interpreting the absolute square of the Jastrow wave func-
tion as a classical Boltzmann-Gibbs probability for a pair
potential energy, it can be seen that the Jastrow trial
function is equivalent to classical system interacting with
a pair potential. The physical argument for BEC is then
straightforward: to calculate n(Ar) one displaces an arbi-
trary atom by Ar; if the average amplitude for this is
nonzero, the system has BEC. The condensate fraction
will be nonzero as long as u(r) is short ranged, except
for special systems such as hard spheres at close packing
density. It will also be true if the wave function has short-
ranged three or higher body correlation factors. Chester [3]
then pointed out that such a trial function can be a crystal,
since it has the same spatial density as a classical solid
interacting with a pair potential. This argument can be used
to prove [8] that there exist quantum systems with both
crystalline order and BEC. Chester further conjectures that
under the same conditions, a crystal will have BEC only if
there exist ground state vacancies (or interstitials). This
argument has been recently elaborated [10]. The Jastrow
form of trial function turns out to give a seriously incorrect
density for freezing [11] and other properties. As is well
known, melting of classical systems occurs when the rms
vibration around a lattice site equals about 0.14 of the
nearest neighbor distance: Lindemann’s melting criterion.
However, solid “He does not melt until much later [12],
with a Lindemann’s ratio of 0.30. Assuming Lindemann’s
criteria for the melting of a classical system, no Jastrow
trial function can describe a solid *He near melting, nor can
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it describe a quantum crystal without an intrinsic popula-
tion of point defects.

A much better description of solid “He is obtained by
multiplying the Jastrow function by a localization term; the
Jastrow-Nosanow form [13] (JN) or ““insulator’ form:

Vin(R) = —Z l_[ &p,(r;). (3)
P

Here ¢,(r) (a Wannier function) is localized about lattice
site i, and P a permutation of atoms to lattice sites. The
sum over P projects out the bosonic component of the wave
function; the projected wave function is a ““permanent.” In
fact, the symmetrization lowers the variational energy by
an amount proportional to the exchange energy, calculated
in Ref. [14] to be about 3 wK/atom, negligible for most
properties but crucial for properties such as BEC or NCRI.
The JN wave function is a very good description of the
ground state judging by the computed energies, Debye-
Waller factors, pair correlation function, and estimated
melting density [11]. However, the solid order is put in
“by hand” rather than coming about spontaneously.
Broken translational symmetry is the hallmark of the crys-
tal state [15,16]. Upon freezing a density wave arises
which defines the lattice sites, a mean field potential and
hence ¢;(r). It has been shown [17] that this type of trial
function does not have BEC, assuming that the sum of the
overlap of ¢ with those on other sites is less than unity as is
expected to be the case. Because of the localized functions,
the Reatto-Chester theorem on BEC does not apply.

An alternative trial function [18-20] (we will denote as
a metal, V,,) is obtained by making the single-body func-
tion ¢(r) independent of the lattice site, but still having
lattice symmetry. For electrons, ¢(r) would be a Bloch
function of band theory and would be obtained as a solu-
tion of a mean field with lattice symmetry. It is expected [1]
that vacancy-interstitial (VI) fluctuations play an important
role in supersolidity. In the JN function, VI pairs are bound,
just as electron-hole pairs are in an electronic insulator. In
the metallic function, vacancies will be locally attracted to
interstitials but they are not bound as pairs; as a result the
W, has both BEC and NCRI. Calculations on a similar
quantum solid [19] have found that W), has a higher energy
than Wyy; it costs energy to create unbound VI fluctuations.
We note that calculations [21] and experiments [22] on
solid “He suggest that there are no unbound vacancies or
interstitials at low temperatures.

Another trial function, the ‘“shadow’’ wave function [23]
(SWF) has been introduced to allow a translationally in-
variant trial function to have the correct solid order. In this
case, a single atom coordinate in the Jastrow trial function
is replaced by a composite object, a linear polymer, with
the inter- and intracorrelation factors being variationally
determined. Typically the polymer is in fact a dimer, with
the two ends separated by a distance on the order of the
interatomic spacing. One of the ends (the shadow) is

integrated over to get the trial function. The great advan-
tage of the SWF is that the crystal order is spontaneously
generated, and one gets accurate properties after optimiz-
ing the wave function parameters. As more monomers are
added to the trial function, the functional form is equivalent
to the Feynman-Kacs path integral expression for the
ground state wave function [24]. Though it has not been
analytically shown, simple arguments involving displacing
the polymer make it plausible that the shadow trial function
will have always have BEC, as long as the interatomic
correlation factors are short ranged. This has been verified
in recent numerical calculations by Galli et al. [25].

Thus, we have a dilemma, not uncommon with argu-
ments based on variational wave functions: one can have
several satisfactory trial functions, all of them capable of
good descriptions of solid helium, but some are BEC and
some are not BEC. All of the usual properties one uses to
test the quality of the trial function, e.g., the energy, the
Debye-Waller factor, the pair correlation function, etc., are
diagonal in coordinate space [expectations of |W(R)|*];
hence they are unreliable measures of how accurate the
off-diagonal elements needed in Eq. (1) are. As we have
mentioned above, it is not possible to state a general
theorem covering whether all quantum crystals must or
cannot have BEC, since the Jastrow trial functions can be
used to define a Hamiltonian which is supersolid. We need
a more direct, reliable method to decide whether the
ground state of solid 4He is BEC and, hence, which class
of trial function, metal or insulator, is appropriate.
Calculating n(Ar) in solid bulk “He allows us to establish
how good these trial functions are for computing BEC in
quantum crystals.

To provide an unbiased answer, we use path integral
Monte Carlo (PIMC) simulations [14], a numerical method
that calculates integrals over the many body density ma-
trix. It is ideally suited for this calculation since it can be
done at finite temperature (under conditions where an
experimental signature of NCRI has been seen), and is,
in principle, exact, and has been validated on many prop-
erties [14] of liquid and solid “He. Most importantly, it is
independent of a trial wave function bias or any assump-
tion of lattice. Only the He-He potential enters: a semi-
empirical form [26] is known to be accurate; in any case,
experimental results suggest that supersolid behavior is a
robust phenomenon insensitive to fine details of the
interaction.

In PIMC, based on Feynman’s description of superfluid
helium, one maps the quantum system onto a classical
system of “polymers’” which can permute onto one an-
other. The value of n(]Ar|) is mapped to the end-to-end
distribution of an open ‘“‘polymer” in a sea of closed
polymers representing the other helium atoms. While all
particles are fully quantum mechanical, one polymer is
open because we are computing the one particle momen-
tum distribution. If the system has ODLRO, the two ends
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will become separated from each other; the condensate
fraction is the value of n(Ar) at large r. On the other
hand, if there is no ODLRO, the two ends will remain
localized relative to each other and n(Ar) will approach 0
at large |Ar|. Superfluidity (i.e., NCRI), on the other hand,
is represented in PIMC as a long cyclic permutation of
paths, for example, as a complete row of atoms shifting
down one element. One can immediately see the difference
between ODLRO and NCRI in a PIMC solid calculation.
Suppose we have N atoms and N lattice sites, so each site
is, on the average, singly occupied. To perform the
ODLRO calculation, one of the atom’s paths is opened
up, so now there will be N — 1 closed polymers and 2 open
ends; clearly one of the N sites must be doubly occupied if
we count the open ends as distinct atoms. For NCRI one
can simultaneously shift all atoms to their new permuted
sites; there need not be any double occupation, but such a
simultaneous shift is unlikely for many atoms.

Techniques [14] developed and tested [27] on superfluid
“He are used to calculate n(Ar) efficiently, although new
moves are used to ensure ergodicity in the solid. If one
simply cuts open one polymer, one rarely finds large values
of Ar. To guarantee sufficient statistics on the end-end
distance, we multiply the path integral density by a series
of importance sampling functions having the effect of
forcing apart the ends. A series of importance functions
are used to get good statistics for a specific range of
magnitudes of |Ar| The separate end-to-end distributions
are then normalized with respect to each other by minimiz-
ing the y? difference between them and using the definition
n(0) = 1. We perform calculations of n(Ar) both by per-
forming an angular average over Ar as well as fixing Ar in
the basal plane, specifically in the x direction. Calculations
of n(Ar) can much more easily access the full path space
than calculations of the superfluid density because the ends
of the open polymer can move more freely.

Calculations [28] have been performed in a nearly cubic
box of 180 particles as well as a series of longer rectangular
boxes extended in the basal plane ranging from 48 to
144 atoms. For the longer box, we altered our importance
function to force the open ends apart only in the x direction
(in the nearest neighbor direction of the basal plane). We
examine values of n(Ar) for a range of temperatures 0.1 to
2 K in a (periodic) rectangular box of size ~18.5 A cor-
responding to a density, 0.0286 A3 near the experimental
melting pressure of 25.3 bars. The random walk is started
with the atoms in a perfect hcp crystalline lattice but no
constraints are placed on how the atoms can arrange them-
selves. Since the box is chosen to be commensurate with a
perfect hep crystal, vacancies and interstitials are expected
not to be common in the system, but they can form by a
fluctuation. We note that throughout the PIMC simulation
the system chooses to be consistently arranged in this hcp
lattice. We have verified that the results presented here are
independent of temperatures below 2.0 K.

The results of these calculations for 7 = (0.5 K are
shown in Fig. 1. Note the curvature at small Ar is deter-
mined by the kinetic energy estimated at 24.0 K/atom. For
both the spherical average value and the value in the basal
plane n(|Ar|) decays exponentially for |Ar| >3 A: we
find no indication of ODLRO (BEC) in bulk solid “He.
In fact the rate of decrease for n(x), the SPDM in the x
direction, is in agreement with the frequencies for straight
line winding exchange [5], shown as the dashed line. We
find oscillations in the computed n(x) reflecting the under-
lying crystal lattice. The angular averaged n(r) shows less
structure than that in the x direction. Though it is possible
that n(x) will plateau for a longer distance scale, we see no
indication of this in the results, nor can we think of a
physical mechanism that would be responsible [29]. A
system with ODLRO will be manifested when one end of
the open polymer loses knowledge about the other end of
the open polymer. But we find that pulling apart the two
ends takes “work” per unit length, no matter how far apart
the two ends are. This happens because additional atoms
are displaced from their lattice sites.

The results of our PIMC calculations are in quantitative
agreement with variational Monte Carlo calculations using
a sohadow wave function [25] (SWF) for distances less than
9 A; they conclude that BEC does exist in the ground state
of “He with a very small condensate fraction, ny = 5 X
1079 at the melting density. However, with PIMC we find
that n(Ar) continues to decrease beyond 9 A. The SWF-
computed n(Ar) is remarkably accurate up to the second
neighbor distance and systematically improves upon the
Jastrow wave function. Nonetheless the SWF is still built
from short range correlations, which leads inevitably to a
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FIG. 1 (color online). The single particle density matrix as a
function of distance (in 1&), estimated with PIMC, in hcp “He at a
density 286 nm ™3 and a temperature of 0.5 K. The solid (red)
curve is the spherically averaged n(r) while the dot-dashed
(blue) curve is n(x). The upper double-dot-dashed (green) curve
is a variational MC calculation using the shadow wave function
Ref. [25]. The dashed straight line (black) has a slope determined
from the exchange calculations of Ref. [5].
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nonzero superfluid fraction. We also expect the SWF will
give a nonzero but very small vacancy concentration [30].
PIMC does not make a variational ansatz, and has the sole
assumption that the results at low temperature smoothly
approach the ground state values.

Among the proposed quantum solid wave functions, the
symmetry-breaking Nosanow-Jastrow wave function gives
results in agreement with PIMC, validating the insulator
representation of solid helium. [Further details about this
picture are in Ref. [15].] The implication of our calculation
and the Reatto-Chester theorem is that a quantum solid
trial function must include long-range correlations. This is
most simply done by putting in localized functions about
lattice sites, reflecting the broken symmetry. We have only
done PIMC calculations at the melting density but we do
not expect different behavior at higher density, since diffi-
culty of exchange grows rapidly with density. The result
reported here, together with the finding of zero superfluid
density reported in Ref. [5], suggests that the mechanism
for the measurements of Kim and Chan [4] involves more
than equilibrium properties of a commensurate *He crystal.
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Note added.—After the calculation reported here was
completed, we have learned of a similar PIMC calculation
[32] done simultaneously. Although the numerical meth-
ods used in the Monte Carlo algorithm differ in a nontrivial
way, the results are in substantial agreement.
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