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Observation of Collective Modes of Ultracold Plasmas

R.S. Fletcher, X.L. Zhang, and S.L. Rolston

Department of Physics, University of Maryland, College Park, Maryland 20742, USA
(Received 16 November 2005; published 15 March 2006)

Applying a radio-frequency electric field to an expanding ultracold neutral plasma leads to the
observation of as many as six peaks in the emission of electrons from the plasma. These are identified
as collective modes of the plasma and are in qualitative agreement with a model of Tonks-Dattner
resonances, electron sound waves propagating in a finite-sized, inhomogeneous plasma. Such modes may
provide an accurate method to determine the time-dependent electron temperature.
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Ultracold neutral plasmas, created by the photoioniza-
tion of laser-cooled atoms [1], have properties determined
by the initial atomic density and excitation fraction and
have an initial electron energy determined by the tuning of
the photoionization laser with respect to the ionization
limit. Such ultracold plasmas (UCPs) are rather novel
plasma systems, not only because of their low tempera-
tures, but also because they are unconfined, inhomogene-
ous, and freely expanding into vacuum.

To date, measurements have been confined to global
properties of the system, such as electron temperature
[2], ion temperature [3,4], expansion velocities [5], and
three-body recombination rates [6]. Although there is
plenty of evidence supporting the plasma character of
such systems from these measurements and associated
theory, much of plasma physics can be viewed as the study
of collective modes, which is what makes plasma such a
rich and diverse physical system.

In this work, we present observations of collective
modes of UCPs, excited by the application of rf electric
fields, and detected through the enhanced emission of
electrons during the plasma expansion. We observe as
many as six mode frequencies and track the modes through
the changing plasma density during expansion. We tenta-
tively identify these modes as Tonks-Dattner resonances
[7,8], the modes of an inhomogeneous finite-sized plasma
obeying the Bohm-Gross dispersion relationship [9]. For
small values of the wave vector k, the mode frequency
approaches the cold plasma frequency, while at larger k the
modes can be viewed as electron sound waves with a linear
dispersion relationship. We find good agreement with cal-
culations of these Tonks-Dattner resonances, although we
have to specify an outer edge of the plasma, which enters
into the boundary conditions for the calculation. To sim-
plify the model, we also assume a time-independent elec-
tron temperature, ignoring the very early time change in
temperature observed in [2,10]. The unconfined nature of
the UCP is rather different than the confined systems where
these resonances have been previously observed.

Our creation of the ultracold plasmas is similar to pre-
vious work [1]. A magneto-optic trap (MOT) is used to
collect ~5 X 10° metastable xenon atoms and to cool them
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to approximately 20 K. The spatial density distribution is
roughly Gaussian with a rms radius oy ~ 280 um and a
peak density of about n, = 2 X 10° cm 3. The plasma is
then produced using a stepwise two-photon excitation
process (882 nm + 514 nm, 10 ns pulse), ionizing up to
30% of the MOT population. We control the ionization
fraction with the intensity of the photoionizing laser, while
the initial electron energy AE is controlled by the fre-
quency of the 514-nm photon.

The ionized cloud rapidly loses a small number of elec-
trons, resulting in a slightly attractive potential for the
remaining electrons, and it quickly reaches a quasineutral
plasma state. It then expands with an asymptotic velocity
typically in the 50-100 m/s range caused by the outward
electron pressure [5]. Approximately 1.5 cm above and
below the plasma are wire mesh grids which are dc-biased
to provide a small electric field (~50 mV/cm) so that
electrons leaving the plasma are guided to a microchannel
plate detector. The electron signal is recorded as a function
of time. As can be seen in the lowest panel of Fig. 1, the
signal consists of a prompt peak, followed by a region of
little electron loss. This is followed by a long ~200 s loss
of electrons, interpreted as the decay of the plasma as
electrons evaporate out of the potential well, which is
getting shallower due to expansion. The upper panels of
Fig. 1 show the recorded signal when an rf voltage is
applied to one of the grids; the rf signal is coupled into
the chamber through a non-impedance-matched feed-
through, and it is thus difficult to estimate the exact size
of the applied field. We typically supply —45 to —5 dBm
at the feedthrough, which results in oscillating fields of
order 0.4-50 mV/cm (higher powers are necessary at
higher frequencies). Clearly visible in the data are multiple
peaks induced by the rf fields, with positions in time (i.e.,
different plasma densities) depending on the frequency. We
considered that the later peaks might be a response of the
plasma to the excitation at earlier times (‘“‘ringing’’). To
test this, instead of cw rf excitation, we applied the rf with a
1 ps-duration pulse and stepped through the plasma evo-
lution with 0.5 us steps. The signals obtained in this
manner were combined, resulting in curves nearly identical
to those of Fig. 1. This shows that the late time peaks
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FIG. 1. Typical electron emissions from an expanding ultra-
cold plasma. rf electric fields with the noted frequencies are
applied to the expanding plasma, yielding distinct peaks that
depend on frequency. The applied rf power is adjusted to make
the peaks visible. Note the distortion of the curves at times
immediately after the prompt peak for higher rf frequencies, due
to the higher rf power required to observe resonance peaks at
those frequencies.

correspond to the excitation of the plasma at that time and
are not a delayed response from earlier excitation.

The times at which the resonance peaks occur are related
to the frequency of the rf field applied to the system. We
varied the frequency from 5 MHz to 80 MHz and deter-
mined the time at which each peak occurred by subtracting
the background (no rf curve) and fitting a Gaussian to each
peak. In this way we generated the family of frequency
versus time curves shown in Fig. 2. We observe that higher
frequencies require higher rf power to make visible fea-
tures. This higher rf power tends to distort the background
(signifying some nonresonant or highly damped heating
process), which makes the background subtraction process
less effective (see Fig. 1 for frequencies >30 MHz). By
using the lowest rf power possible that still permitted
observations of these modes, we obtained data sets with
roughly uniform uncertainties at all times.

The families of curves such as those in Fig. 2 have lim-
ited observed dependence on parameters that can be con-
trolled in our apparatus. The curves in Fig. 2 were obtained
for an initial electron energy of 100 K, although they are
quite similar for other initial energies. This may be ex-
plained by the tendency of these UCPs to equilibrate to
~25 K in a few us due to competition between adiabatic
cooling and three-body recombination-induced heating [2].
The curves shift if the number of particles in the plasma is
changed or if the initial radius of the plasma is changed;
changes that would lower the density cause the frequency
versus time curves to shift to the left, as is to be expected if
one were to assume the plasma frequency behaves as w,
n, ()2« 173/2 where w3 (r)=n,(r)e*/eym,.

We varied the density by varying the excitation proba-
bility, which also serves to vary the neutrality of the
plasma. We found that the largest number of peaks are
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FIG. 2. Mode frequencies vs time. The data have errors at all
points approximately the same as the representative error bars.
Dashed lines are Tonks-Dattner theory fits with 7 = 19 K, ny, =
1.9 X 10° cm™3, and expansion velocity v = 65 m/s. The dot-

ted line is a cold plasma theory fit with ny = 1.9 X 10° cm ™3,

v = 65 m/s, and multiplicative factor of 0.24 scaling the peak
plasma frequency.

found at the highest densities and neutralities. This ex-
plains the lack of such features in the earlier work [5]. Note
the “bulge” at around 35 MHz in some of the curves of
Fig. 2. By reducing the rf power to the lowest level at which
the peaks could still be observed, the bulge was signifi-
cantly reduced, suggesting that it is the result of high rf
power distorting the electron emission signals. However, at
such low rf power only the first one or two peaks could be
resolved in the signal; for the purposes of this work the rf
power was set at the lowest value at which we could still
observe at least three peaks. The full effects of increased rf
amplitude on the plasma behavior have yet to be fully
understood.

In Ref. [5] the application of an rf electric field resulted
in the observation of a single peak. This signal was inter-
preted as the excitation of the fundamental plasma reso-
nance at the plasma frequency. A simple model assumed
that the peak of the response corresponded to the time
when the average plasma frequency (assuming a Gauss-
ian density distribution) equaled the rf frequency [w =
0.6w,(0), where w(r) = n(r)e*/€eym,]. Since w, =
n}/ 2, this was used to extract the time-dependent plasma
density and expansion velocities. The extracted asymptotic
expansion velocities matched well with a simple hydro-
dynamic model for initial energies above 100 K, lending
confidence to this interpretation (at lower initial ener-
gies three-body recombination provides an additional
source of energy). Subsequent theoretical work [11] used
cold plasma theory with a Gaussian density profile and
found the peak response would actually correspond to a
plasma frequency ranging from @ = 0.22w,(0) to w =
0.38,(0), but would not change the conclusions about the
expansion velocity [12]. In recent work [2] the expansion
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velocity for large initial energy (>400 K) is used as a way
to calibrate the density. Nonetheless, aside from an overall
scaling factor, this response was consistent with a measure
of the relative density as a function of time when compared
to expansion modeling.

The interpretation of the single peak as the fundamental
plasma resonance was predicated on the existence of only a
single peak. If we assume only dipole modes are excited,
cold plasma theory (which neglects pressure gradient
terms) predicts only the single resonance. Calculations of
higher order (/ > 1) modes for a Gaussian density profile
[13] show they lie at lower frequencies, inconsistent with
the observed frequencies. In addition, our rf electric fields
are rather uniform across the plasma, which should make
coupling to higher order modes less likely.

Another possible explanation for the peaks is the pres-
ence of ion acoustic waves in the plasma. Ion acoustic

waves have a velocity, vi,, = +/kT,/m; where T, is the
electron temperature and m; is the ion mass. This is exactly
the expansion velocity of the plasma (at least for 7 >
100 K), so one might expect “frozen” acoustic waves as
the plasma expands, as was observed in simulations [10].
Since the electrons are so light and mobile, their density
will follow the ion density. If we consider the simple model
of peaks being due to regions with many electrons at
specific densities, even a strongly modulated electron den-
sity does not yield peaks, but just a small distortion of the
response. To further test the ion acoustic wave hypothesis,
we created plasmas with various strong density modula-
tions (such as imaging a wire through the center of the
exciting beam). The resultant peaks were qualitatively
unchanged, suggesting that ion acoustic waves are not a
source of the peaks.

Given the lack of an adequate explanation from cold
plasma theory, we must look toward phenomena dependent
on temperature, even though our plasmas are quite cold.
When the electron pressure term is included in the plasma
fluid equations, this leads to the Bohm-Gross dispersion
relationship for plasma waves [9], which we write in a local
density approximation as:

3kgT
w? = w%,(r) + $kz(’”), (n
m

e

where k(r) is the local wave number and w ,(r) is the local
plasma frequency.

This describes a wave with frequency w, as k — 0 (the
cold plasma result), and a linearly dispersive wave for high
k (an electron sound wave). We can estimate whether this
may be relevant to ultracold plasmas by using the size of
the plasma to estimate a relevant k = 27/ 0. For typical
UCP sizes and temperatures, the temperature-dependent
second term in the dispersion relation is approximately the
same size as the first: we need to consider the effects of
temperature.

Resonances in confined plasmas governed by the Bohm-
Gross dispersion relation were first reported by Tonks [7]

and were later studied in detail by Dattner [8], and are
commonly referred to as Tonks-Dattner (TD) resonances.
Qualitatively, in those regions where the electron density is
low enough [w,(r) < w], the plasma wave propagates
[k(r) is real], and in those regions where the electron
density is high [@ P(r) > w], the plasma wave is evanescent
[k(r) is imaginary]. The longitudinal plasma waves reflect
at the cutoff radius r, where w ,(r,) = w and form radial
longitudinal standing plasma waves between the plasma
wall and the cutoff radius r.. A determination of the
resonant frequencies can be found using ““pressure theory,”
which makes use of the moments of the Vlasov equation
truncated by the adiabatic scalar pressure approximation
together with the quasistatic approximation of Poisson’s
equation [14]. These equations result in a fourth-order
ODE, and solutions must be obtained numerically. By
making further approximations of purely electrostatic ra-
dial waves in the plasma and neglecting any coupling to the
electromagnetic waves, the pressure theory yields the fol-
lowing equation [15] for the density fluctuation 8n(r)

V26n(r) + K2(r)én(r) = 0 )

with the boundary conditions 6n(0) = 0 and Vén(r,,) =0
[or j.(r,,) = 0], where r,, is the wall radius. Unlike pre-
vious work, our unconfined plasma has no wall, and we
will have to choose an appropriate value for r,, (see below).
The eigenvalues may be determined by using the WKB
method [16]. In spherical coordinates, the resulting equa-
tions are

tan[ / k(r)dr} — %[k(rw)], 0,0)<o 3

rW' 1
fr k(r)dr=<p+z>77, p=123.. ,0)>0,
4

where ®,(0) corresponds to the peak density. Since
k*(r) = [w? — w%(r)]/(3kgT,/m,), Egs. (3) and (4) can
be numerically solved to provide the resonant frequency w.

For our ultracold neutral plasma, we assume the ini-
tial electron density profile is a spherically symmetric
Gaussian distribution because the initial atom distribution
is Gaussian and the laser excitation profile is approxi-
mately uniform across the cloud. We also assume self-
similar expansion, with a time-dependent rms radius o =

/o3 + (v1)?, where v is the asymptotic expansion velocity

[simulations [17] show the plasma has linearly increasing
internal fields, which generates self-similar expansion].
Since our ultracold neutral plasma is not confined, it
freely expands into vacuum. Previous calculations of
Tonks-Dattner resonances have been done for cylindrical
plasmas with defined walls, making the choice of r,, un-
ambiguous. There is no physical wall for our system, so we
choose the “wall” r,, to be 30, as this limit of integration
for Egs. (3) and (4) is reasonable in that it includes a large
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portion of the plasma and gives results consistent with our
estimated densities and with cold plasma theory. We note
that at the 3o point, the local Debye length Ap(7) is on the
order of the size of the plasma o, where Ap(r) =
VeokgTy/e*n(r).

Using the time-dependent Gaussian density profile and
our choice of r,,, we numerically integrate Egs. (3) and (4),
with the results shown in Fig. 2. We assume (in accordance
with previous work) that the lowest frequency mode is not
given by the TD theory (p = 0 is not a valid solution), but
is given by cold plasma theory. We use a fit to the cold
plasma curve and find an expansion velocity of 65 m/s. We
adjust T, and n to fit the generated TD curves to the data
(to all data curves except the lowest) and find 7, = 19 K
and ny = 1.9 X 10° cm ™3, which are well within the ex-
pected range of temperature and density for our system.
Using this ny found by fitting the TD calculations to the
data, we fit w p(O) to the cold plasma data curve of Fig. 2,
finding that a scale factor of 0.24 is required, which is
consistent with Ref. [11], although not necessarily consis-
tent with previous measurements [5].

For these Tonks-Dattner resonances, given a choice of
r,, the temperatures can be well determined; however,
since the mode frequencies are dependent on r,,, we do
not view this method as a quantitative way to determine 7.
Changing r,, by 10% results in a 20% change in the fitted
temperature and as much as a factor of 2 change in the
fitted density. This highlights one of the unusual features of
expanding UCPs—the lack of a defined boundary condi-
tion. Theoretical work that can definitively calculate these
electron sound waves in such a geometry is needed, which
will then allow the observation of these modes to be an
accurate method for temperature determination.

For this work, we fit the calculated curves to the data
using a time-independent temperature. Previous electron
temperature measurements [2] saw some early time depen-
dence, but were limited to a small range in the expansion
time where the method was applicable (r < 10 ws). The
good agreement between the observed modes and the TD
theory lends strong credence to the interpretation of these
modes as TD resonances and also implies that the time
dependence of the temperature at long times is relatively
weak. By using the TD curves with additional theoretical
input, it should be possible to dispense with our constant
temperature approximation and fit temperatures at each
time to our data sets. Other temperature measurements
[3,4] image ions in the plasma to determine the ion tem-
peratures, but they are typically much different than the
electron temperatures. lon imaging can be used to deter-
mine the expansion velocity of the plasma and thus, indi-
rectly, the time-integrated electron temperature; using the
TD resonances may provide a useful alternative technique
for determining the time-dependent electron temperature
of expanding UCPs.

Further areas of investigation include studying the
amplitude of these modes and their dependence on sys-
tem parameters. This will require a better knowledge of
the actual rf electric field in our chamber. In addition,
the theory presented above only determines positions
and says nothing about coupling strengths (in fact, it
assumes weak coupling). We clearly observe more
modes for larger plasmas, which is not addressed in
the theory. Such electron sound waves should exhibit
Landau damping, so a study of their widths may yield
information about damping with the UCPs. The applica-
tion of a uniform magnetic field should lead to the appear-
ance of new modes.

In summary, we have observed a series of collective
modes of an ultracold plasma excited with uniform rf
electric fields. We interpret these modes as electron sound
wave resonances in the finite plasma, known as Tonks-
Dattner resonances. We calculate the mode frequencies
with WKB theory and find good agreement, using a physi-
cally reasonable assumption about the outer boundary
condition for the waves. If a rigorous theory of electron
sound waves in an unconfined geometry can be developed,
these modes will offer a direct and precise way to deter-
mine the time-dependent electron temperature of ultracold
plasmas over a large region of their expansion.
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