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Space-Charge Effects in the Current-Filamentation or Weibel Instability
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We consider how an unmagnetized plasma responds to an incoming flux of energetic electrons. We
assume a return current is present and allow for the incoming electrons to have a different transverse
temperature than the return current. To analyze this configuration we present a nonrelativistic theory of the
current-filamentation or Weibel instability for rigorously current-neutral and nonseparable distribution
functions, f0�px; py; pz� � fx�px�fy�py�fz�pz�. We find that such distribution functions lead to lower
growth rates because of space-charge forces that arise when the forward-going electrons pinch to a lesser
degree than the colder, backward-flowing electrons. We verify the growth rate, range of unstable wave
numbers, and the formation of the density filaments using particle-in-cell simulations.
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A fundamental issue in plasma physics is how a plasma
responds to an externally applied electric field. Another
closely related issue is how a plasma responds to an
incoming flux of energetic electrons. In this case, a return
current is generated, resulting in essentially no net current
at each local position; however, there is net heat flux. The
total system is then current-neutral with an anisotropic
velocity distribution function. It is the purpose of this
Letter to investigate the conditions under which the incom-
ing flux of electrons will filament in a collisionless plasma.
Apart from being of interest as a basic plasma physics
problem [1–3], this current-filamentation instability is of
practical importance for various phenomena in the labora-
tory as well as astrophysics. Understanding this instability
in the context of fast ignition [4] is of particular interest
because it is hoped that the magnetic fields resulting from it
will focus and guide the incoming electrons generated by
an intense laser.

Since the seminal work of Weibel [1], it has been well-
known that a separable anisotropic bi-Gaussian velocity
distribution function, f0��z; �?� � ��2��
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perturbations but unstable for purely electromagnetic ones.
It is also well-known that a beam (bump on tail) carrying a
current through a plasma will filament by a current-
filamentation instability that has a physical mechanism
closely related to the Weibel instability [3,5]. If a mode
is purely electromagnetic then no electron density fila-
ments can exist. This implies the presence of a neutralizing
return current, which filaments at the same rate but in the
opposite sense because the magnetic force is in the oppo-
site direction.

Cold fluid theory has been employed to study the elec-
trostatic coupling to the purely electromagnetic mode [6],
and ion motion associated with this mode for cold beams
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has been observed in 2D particle-in-cell (PIC) simulations
[7], indicating that coupling may be significant.

If the current is carried by a beam then the system is also
susceptible to two-stream instabilities. The two-stream
instability combines with the current-filamentation mode
to yield the fastest-growing mode in a direction with a
wave vector at an angle with respect to the beam drift [8,9].
This mode is a mixture of longitudinal and transverse
fields. Therefore, electron density filaments and space-
charge fields can be present. Bret et al. [9] argued that
this coupling explains the electron density filaments ob-
served in recent experiments [10].

In this Letter, we offer a different explanation and we
argue that, in general, current filamentation leads to non-
oscillatory density filaments. In most situations of interest
the forward-flowing electrons (in the êz direction in our
configuration) do not form a bump on tail but rather a
distribution with monotonically decreasing tail [11].
Furthermore, the transverse temperatures (Tx and/or Ty)
for the forward- and backward-flowing electrons differ,
meaning the total distribution function is not separable.
Under these circumstances the forward and returning elec-
trons do not pinch (i.e., filament) at the same rate from the
magnetic pinching forces. This results in density filaments
and hence electrostatic fields that reduce the growth rate
and also cause the ions to respond.

We assume that the electron velocity distribution func-
tion can be approximated by a sum of drifting (in the êz
direction) Maxwellians, that the ions form a nondrifting
cold background and rigorous current and space-charge
neutrality. We will consider systems that are stable to two-
stream modes in the êz direction. In our model the distri-
bution functions for electrons and ions are described by
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f0i��� � n0i���x����z�; (2)

where for each electron beam (| � 1; 2; . . . ), �t| is the
thermal velocity and �d| is the drift velocity in the z
direction. We choose x to be the direction of the unstable
component of the wave number (kx � ky; kz). The polar-
ization of the unstable electromagnetic wave is EEM �
Ezêz, and we allow for electrostatic fields to exist (EES �
Exêx) so as to study the coupling to the unstable mode. The
instability is fed by the �� BEM � By��� êy� force and
therefore the components of the distribution functions in
the �y are irrelevant and do not appear in (1) and (2).

For the coupled electromagnetic-electrostatic waves we
assume perturbations / exp�i�kxx�!t��. The linearized,
Fourier-transformed Maxwell-Vlasov equations yield the
dispersion relation:
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where the plasma dispersion function is defined as
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for =��|�> 0 and is analytically continued into the lower
half plane. The nonrelativistic plasma frequencies are de-
fined as !2

p| � 4�n0|e
2=me, while the ion frequency is
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pi � 4�n0ie2=Mi. Additionally we define �| �
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on the Z functions denotes the number of differentiations.
If we set the two diagonal terms equal to zero, for �| 
 1
we obtain the dispersion relation for electromagnetic
modes in the kinetic limit [2] and the ion acoustic branch,
respectively. The nondiagonal terms lead to coupling be-
tween the two types of waves. We use the power series
expansion of the Z function and its derivatives to derive the
dispersion relation from (3) in the limit of weak anisotropy
(�|; �| 
 18 |). In other words, assuming �d| 
 �t| as
well as !p|, kx�t| � !;!pi and dropping the displace-
ment current, the dispersion relation may be written as
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persion relation (6) reveals that depending on the value of
�| the growth rate can be approximately obtained by
setting either the second or the first curly bracket term
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equal to zero. We obtain from (6):
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where (8) can be seen as a solution of (6) in the limit of
infinitely massive ions.

In the absence of the nondiagonal terms, namely C1 �
0, (8) reduces to (7), which recovers the kinetic limit of the
purely electromagnetic mode [2]. Ignoring the coupling is
not necessarily self-consistent as it implies that the system
is initially charge neutral and that charge neutrality is not
disturbed by the linear growth of the instability. If the
electron beams have different temperatures, they tend to
pinch to a different degree in the magnetic field of the
unstable electromagnetic mode, and therefore a charge
imbalance is generated. To illustrate this, let us assume
that all of the beams have equal temperatures and that the
system is current-neutral; we obtain

For �t| � �t8 | ) C1 �
1
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t
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and, therefore, there are no electrostatic effects. By ex-
panding the distribution function in terms of Hermite-
Gaussian modes [12] we can show that for a general
electron distribution function that is separable f��x; �z� �
fx��x�fz��z�, the coupling vanishes, i.e., C1 � 0.

Because the electromagnetic beam filamentation imme-
diately leads to charge imbalance, the cold ion background
needs to move to cancel the space charge. We can see this
by letting Mi ! 0) !2

pi ! 1 in the ion acoustic part of
(3) and then taking the limit of weak anisotropy, to obtain
(7) once again. The assumption of a purely electromagnetic
mode is not physically self-consistent unless the ions can
respond in the same time scale as the electrons; for this
reason, if the background consists of positrons, the cou-
pling to electrostatic modes will be negligible. However,
for Mi � me the ions move slowly, retarding the growth
rate of the instability.

Equation (6) is a valid dispersion relation as long as
!p|; kx�t| � !;!pi, and �d| 
 �t|. We point out that
only for extremely low growth rates the purely electromag-
netic theory (7) applies and therefore is of little interest for
any realistic problem. We can see this by substituting kx �
!p=c and �t| � 0:1c to obtain j!j 
 10�4!p. From (8) it
can be shown that there is always a range of kx such that
�i! � 0, which corresponds to growth.

Electrostatic coupling depends linearly on the wave
number. From (8) we have
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FIG. 1 (color). (a) Electron distribution function showing that
the electrons are stable to two-stream instability and
(b) comparison between simulation and theory illustrating the
reduction of the growth rate due to space-charge effects.
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This leads to a suppression of the high wave numbers and
to a shift of the fastest-growing modes toward longer
wavelengths.

Equations (5)–(8) are useful in analyzing the physical
picture behind the coupling. They predict the corrections in
a regime where the instability is weak (i.e., the small �|
expansion). However, as the physical picture does not rely
on the kinetic character of the analysis, it is reasonable to
try to extrapolate our conclusions to regimes with higher
anisotropy as well. We next examine the other analytically
tractable limit, where the anisotropy of the beams is very
large.

In the high-anisotropy limit we have �t| 
 �d|. We can
use the large-argument asymptotic expansion of the plasma
dispersion function Z| ����1

| �    in the dispersion
relation (3). We recognize that to the first order (��1

| ) in
the asymptotic expansion, each of the nondiagonal (cou-
pling) terms vanishes as long as

P
|!
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while the dispersion relation in the large-argument expan-
sion limit contains space-charge terms, these are higher
order corrections to the electromagnetic mode and become
irrelevant. This is why space-charge terms have heretofore
been deemed unimportant.

In the case of medium anisotropy, where the drift veloc-
ity is comparable to the thermal velocity, we cannot expand
the plasma dispersion function. However, the coupling for
such problems can be significant. To demonstrate this, we
compare PIC simulations results with numerical solutions
obtained from the exact nonrelativistic dispersion relation
(3) for a problem with parameters such that �| � 1 and
�d| � �t|.

Let us assume two counterstreaming electron beams
with equal densities. Additionally we let the system be
current neutral (i.e., �d1 � ��d2) and have nondrifting
cold mobile protons. For the coupling to become signifi-
cant, one of the two beams must be much colder than the
other. We choose �pd1 � pd2 � 0:2mc and thermal ve-
locities pt1 � 0:11mc and pt2 � 0:28mc. For these pa-
rameters we performed PIC simulations with the code
OSIRIS [13]. The total electron distribution function, shown
in Fig. 1(a), has a single local maximum and is therefore
stable to electrostatic two-stream instabilities.

To generate the plot of the growth rate versus wave
number [� i!�k� � ��k�], we performed 1D simulations
with 2048 cells in the direction perpendicular to the drift
and 364 particles per cell, so as to obtain sufficient reso-
lution in k space. We calculated the growth rate for several
modes by using the time interval !pt � 10–80. At around
!pt ’ 80 the growth starts decreasing and the saturation
stage of the instability begins. For these parameters, �d1 ’
1:8�t1. We have numerically solved the exact dispersion
relation (3) for the purely electromagnetic mode and for
10500
the coupled electromagnetic-electrostatic mode for mobile
and immobile ions. The results are presented in Fig. 1(b).

The broken blue line represents the purely electromag-
netic mode and the solid black line represents the correct
solution, which includes electrostatic coupling and ion
motion. The dotted green line shows the solution for infi-
nitely massive ions. The red squares represent simulation
results that agree with the theoretical (solid black) curve.
This curve clearly illustrates that current filamentation
leads to density filamentation and that the inclusion of
the space-charge forces reduces both the growth rate and
the wave number for the fastest-growing mode.

We have also performed 3D PIC simulations with the
same beam parameters. Each electron beam is simulated
by 32 particles per cell on a grid of 400� 400� 208 cells.
Periodic boundary conditions are used and the beams drift
in the z direction (the one with the 208 cells). The cell sizes
are kp�x;y;z���x; y; z� � 0:25. Unstable modes grow in each
transverse (x; y) direction with identical growth rates, lead-
ing to the typical picture of current filaments pinched by
the magnetic field of the unstable modes. The 3D simula-
tion also shows that the system is two-stream stable, so
unstable modes have kz � 0.

Figure 2(a) shows two isosurfaces, one of the density of
the hot electron beam in red (pt2 � 0:28mc) and one of the
cold beam in blue (pt2 � 0:11mc) after !pt � 248:5. For
!pt < 70, which corresponds to approximately 2.2 e fold-
ings, no filamentary structure can be observed in the simu-
lation (not shown here). However, clear filaments emerge
later and are shown in Fig. 2(a) after 7.9 e foldings. Even
though the instability is already in the saturation stage,
coalescence of the filaments has not been observed yet and
the number of filaments has remained constant. After this
point the filaments begin to merge slowly [3,5].

It can be seen from Fig. 2(a) that in agreement with
the theory, approximately 8� 8 filaments fit in this
100c=!p � 100c=!p area. In Fig. 2(b) the region outlined
by the dashed box in Fig. 2(a) is blown up. It clearly shows
that each filament is stable in the z direction (kz � 0).
2-3



FIG. 2 (color). (a) Electron density isosurfaces for the hot
beam (pt2 � 0:28mc, red) and the cold beam (pt1 � 0:11mc,
blue) at !pt � 248:5 confirm the number of filaments predicted
by our theory, (b) zoomed box shows kz � 0, (c) ion filaments
(green) and hot beam filaments (red) are in complementary
locations (zoomed box) and (d) ion filaments (green) and cold
beam filaments (blue) overlap (zoomed box).
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Because of the emergence of space-charge fields, the
ions start moving. Ion filaments develop slowly and are
shown (in green) in Figs. 2(c) and 2(d) along with the
filaments of the hot beam and the cold beam, respectively.
The ion density filaments follow those of the cold beam,
which tends to filament more easily, in agreement with the
physical picture for the coupling. The electron filaments
correspond to a density 20% higher than the unperturbed
value while the ion filaments to a 0.2% perturbation. This
verifies that the ions do not respond fast enough to maintain
charge neutrality.

The nonlinear steady state with ion filaments overlap-
ping the electron filaments of the return current was ob-
served in simulations for the fast ignitor concept [11] and
can be explained from the space-charge coupling described
above. The transfer of energy from the purely electromag-
netic mode to electrostatic modes due to coupling is ex-
pected to significantly affect the development of the
magnetic structures in both the linear and nonlinear stages
of the instability.

This theory deals with nonrelativistic Gaussian distribu-
tion functions. Similar coupling is expected to occur for
relativistic distribution functions; however, the integrals in
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the momentum space cannot be carried out analytically
because of the coupling of the different momentum com-
ponents in the relativistic limit via the � factor. We have
used relativistic waterbag distribution functions [12],
which do allow analytical evaluation of the integrals
[14], and terms similar to the ones discussed above do
arise. However, the waterbag distribution functions are an
appropriate model for the fluid and therefore high-
anisotropy limit of the instability. Because the space-
charge coupling becomes important at the same point in
which waterbag distribution functions become an unreli-
able approximation, we cannot use them to make any
quantitative prediction.

We have examined the effects of coupling of electro-
static modes to the electromagnetic current-filamentation
instability where there is a neutralizing return current. It
has been shown that the instability can be expected to grow
much more slowly than purely electromagnetic instabil-
ities and with lower wave numbers. The space-charge
forces cause the ions to also filament with the ions over-
lapping the colder backward-flowing electrons. These ef-
fects significantly alter the development of the instability
and need to be taken into account whenever the electrons
are described by a nonseparable distribution function.
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