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Spontaneous Emission Suppression via Quantum Path Interference in Coupled Microcavities
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We examine theoretically the spontaneous emission rate in optical microstructures with cavity
resonances that overlap in both position and frequency. Using projection techniques, we show that the
spontaneous emission in such structures can be accurately described by the direct emission and quantum
path interference of emission into a few discrete resonant modes, even though the exact infinite-
dimensional problem involves a coupling to the continuum of radiation states. Moreover, we obtain an
efficient numerical time-domain method for determining the spontaneous emission rate that incorporates
these effects, including the suppression of spontaneous emission into some modes.
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FIG. 1. Index of refraction and intensity profile for the two
modes in the lowest band gap. As the modes are symmetric about
y � 0, jM1�r�j2 (jM2�r�j2) is only shown for y > 0 (y < 0).
Small circles denote the rods, while the large circle encloses
volume, Vs, and denotes the hard boundary used to calculate the
quasimodes.
A central goal of photonic microcavity research is to
modify and control the spontaneous emission (SE) prop-
erties of atoms and quantum dots by tailoring the reso-
nances in these structures. Most work in this area has
focused either on simple single-resonance cavities [1–6]
or on photonic crystals (PCs) [4,7–10]. In these structures,
the SE rate can either be enhanced or suppressed depend-
ing on the structure and the emitter location.

For structures with a single well-isolated resonance at,
say, ! � !m, the ratio RSE�!a; ra� of the rate of SE from
an atom in a microstructure at r � ra with transition
frequency !a to that of the same atom in vacuum, can be
expressed simply as [3,11]

RSE�!a; ra� �
3c�2�m�!a�

4n3�ra�Vm�ra�
; (1)

where c is the speed of light in vacuum, Vm�ra� is the
effective mode volume [3], � � 2�c=!a is the wave-
length of the radiation, n�ra� is the refractive index at the
location of the atom, and �m�!� is the line shape function.
For an isolated resonance, �m�!� is a normalized
Lorentzian with central frequency !m and quality factor
Qm. The maximum SE ratio is the Purcell factor, FP,
obtained by optimizing the dipole orientation and the
atom location ra to yield the well-known result [3,12]
FP � 3�3Qm=�4�

2n�ra�3Vmin�, where Vmin is the mini-
mized effective mode volume.

The simple parametrization of the SE ratio in Eq. (1) is
physically appealing as it describes a complicated open
system in terms of the properties of a single resonance. For
structures like coupled microcavities with multiple reso-
nances, this approach can be generalized by summing over
the resonances as long as the resonances do not simulta-
neously overlap in both frequency and space. However, for
structures with resonances that do overlap in both fre-
quency and space (‘‘overlapping resonances’’), such a
simple expression is, in general, not possible.

In this Letter, we derive a physically transparent expres-
sion for the SE ratio in finite dielectric microstructures with
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open boundaries and overlapping resonances by project-
ing the local density of states onto a suitable set of discrete
modes. For convenience, we use the truly discrete modes of
a closely related closed structure, but this is not required.
This simplified expression for RSE not only contains terms
as in Eq. (1), but also new, qualitatively different terms
describing quantum path interference (QPI) of the SE into
different quasimodes. We demonstrate the accuracy of our
simple expression for RSE and use it to quantify the effects
of QPI on SE in coupled dielectric microcavities, including
the probability of photon emission into a given quasimode.
We use this approach to develop an efficient and general
numerical method to calculate RSE in these complex
situations.

To illustrate our approach, we model the TM modes
[Em�r; t� � Em�r; t�ẑ] of the 2D PC, shown in Fig. 1, con-
sisting of a finite square array (period d) of cylinders in air.
The cylinders are infinite, with radius, R � 0:13d, and
refractive index n � 3. The structure has open boundaries
2-1 © 2006 The American Physical Society
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FIG. 2 (color online). LDOS for the structure of Fig. 1 evalu-
ated at y � 0 as a function x and !.
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and two asymmetrically placed defect microcavities. We
work at frequencies inside the lowest band gap of this
structure: ! 2 �2:5446; 3:0758�c=d.

The SE ratio for an atom with transition dipole, d �
�êk, for any structure can be rigorously expressed as [5,13]

RSE�!a; ra� �
3�2c3

ns!2
a
Lk�!a; ra�; (2)

where Lk�!; r� is the local density of states (LDOS) at r.
The LDOS gives the spectral density of modes versus
position and can be expressed as a modal expansion or
directly in terms of the Green tensor, G, as Lk�!; r� �
�2! ImfGkk�!; r; r�g=�c2, where G satisfies the usual
inhomogeneous Helmholtz equation [13]. We have calcu-
lated the LDOS using the Rayleigh-multipole method [13]
and plot Lz�!;x;y�0� for our 2D PC in Fig. 2. The LDOS
has large resonances near the centers of the two defects but
with very different behavior in the two defects: there is a
large sharp spectral peak at the center of the left defect but
a much smaller peak with a deep spectral dip at the center
of the right defect. As shown below, this strong asymmetry,
and the spectral dip, in particular, are the result of QPI.

We generalize Eq. (1) by introducing the reduced LDOS
associated with a finite number of resonances. The true
modes, f��r�, of a finite, open dielectric microstructure
extend over all space and form a continuum labeled by
�. However, it is exceedingly difficult to use such modes to
compute or understand the SE in the microstructure, and it
would be far preferable to employ the cavity resonances as
was done in Eq. (1). In practice, high-Q resonances always
have a much larger field amplitude within some relatively
small volume, Vs, than elsewhere. For such resonances, the
field is almost unchanged within volume Vs if we enclose it
by an appropriate perfectly reflecting boundary (cf. Fig. 1)
[14]. The modes, Mm�r�, of this related finite and closed
structure, which vanish outside Vs, are discrete, and can be
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chosen to be real and orthonormal:
R
d3rn2�r�Mm�r� �

Mn�r� � �m;n:. These quasimodes are not true modes of
the open system; they can be expanded exactly in terms of
the true extended modes of the open system as

Mm�r� �
Z
d�gm� f��r�; (3)

with expansion coefficients gm� �
R
d3rn2�r�f���r� �Mm�r�.

We calculated the two TM quasimodes in the lowest band
gap of our PC for the boundary shown in Fig. 1 and plot
jMm�r�j2 in Fig. 1. The modes overlap in space and are
close in frequency.

We define the reduced LDOS as the projection of the
LDOS onto the subspace spanned by the quasimodes of
interest, Mm�r�. Here we assume there are two such modes
withm � f1; 2g, noting that the generalization to the multi-
mode case is straightforward. Thus obtaining the reduced
LDOS and using Eq. (2) we find the reduced spontaneous
emission ratio,
R�2�SE�!a; ra� �
3c�2�1�!a�

4n3�ra�V1�ra�
	

3c�2�2�!a�

4n3�ra�V2�ra�
	

3c�2�êk �M1�ra���êk �M2�ra�� ImfC12�!�g
2n�ra�

; (4)
where

Cmp�!� 
 �
2!

�c2

Z
d3r

Z
d3r0n2�r�n2�r0�Mm�r�

�G�!; r; r0� �Mp�r0� (5)

and �m�!� 
 ImfCmm�!�g. Finally, the effective mode
volume, Vm�ra�, for an atom at ra is given by [3]
�Vm�ra���1 
 n2�ra��êk �Mm�ra��2.

The factor Cmp�!� has a simple physical interpretation:
it is the Fourier transform of the probability amplitude for
finding radiation in mode p given that it was initially in
mode m. That is, using a modal expansion of the Green
function [13], we have Cmp�!� �

R
1
0 dtcmp�t�e

i!t, where

cmp�t� 
 �2i
Z
d3rn2�r�Mp�r� � �E	�r; t�=Eo��; (6)
and E	�r; t� is the positive frequency part of the electric
field in the structure with the initial condition, E	�r; t �
0� � EoMm�r�. Thus, Cmm�!� gives the decay dynamics
of light out of mode m, while C12�!� gives the decay
dynamics from mode 1 to mode 2.

The first two terms in Eq. (4) simply give the direct
contributions from the two resonances as in Eq. (1). The
third interference term describes the dynamics of radiation
transfer between the two modes. If the resonances are
overlapping resonances then the third term can be impor-
tant and RSE cannot be written as a sum over terms as in
Eq. (1); we must use either the full LDOS or Eq. (4). We
stress that the mode coupling is not simply an artifact of
choosing an inappropriate two-mode basis; it is easily
proven that it is impossible to model the spontaneous
emission rate at all points inside such a system accurately
using only the first two terms in Eq. (4), regardless of the
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FIG. 3. (a) Quantities �1�!�, �2�!�, and ImfC12�!�g for the
two modes in Fig. 1 calculated using FDTD (solid lines) and
Eq. (5) (dotted lines). (b) SE ratio [RSE�!; r�], the reduced SE
ratio [R�2�SE�!; r�], and the reduced SE ratio without the interfer-
ence term [R�NI�SE �!; r�] at the centers of the two defects as a
function of frequency. For comparison purposes, R�2�SE�!; r� has
been frequency-shifted by the frequency difference found in
Fig. 3(a).
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form chosen for the modes or their line shapes. Thus, in
any two-mode representation of the resonances, there is
always radiation transfer between the two modes. We find
that very accurate results are obtained throughout most of
the structure if we choose the quasimodes to be the modes
of the closed structure with the boundary roughly 0:2� to
0:4� from the edge of the structure [14].

One would not normally use Eq. (5) to calculate the
Cmp�!� as it requires the full Green tensor inside the
structure, which is precisely the quantity we are after.
Instead, the Cmp�!� can be simply and efficiently obtained
using a finite-difference time-domain (FDTD) approach to
calculate the time evolution of the field in the open struc-
ture with initial condition E	�r; t � 0� � EoMm�r�. This
field is then used in (6) to calculate cmp�t� which yields
Cmp�!� as its positive-time Fourier transform. Thus, cal-
culating the spontaneous emission rate (or LDOS) at all
points that are not too near the boundary and at all fre-
quencies close to the resonant frequencies only requires
two FDTD calculations; a vast improvement on standard
FDTD calculation of the Green tensor [15,16] that requires
a separate FDTD for every point in space (typically * 500
points), making our method at least 2 orders of magnitude
faster.

In Fig. 3(a), we plot �1�!�, �2�!�, and ImfC12�!�g for
our structure calculated using the FDTD method. To con-
firm the accuracy, we also plot the results using Eq. (5)
with the full Green tensor calculated using the multipole
method [13]. The agreement is clearly excellent apart from
a small frequency shift in the FDTD results by �! �
0:0044c=d. Such a shift is typical in FDTD calculations
and can be reduced by using a finer grid.

Because the resonances of this open structure are well
described by the quasimodes M1�r� and M2�r� and the
coupling between modes is not too strong, the �m�!� are
very close to Lorentzian, with resonant frequencies!m and
quality factors, Qm. The deviation from Lorentzian line
shape arises because the modes are not just coupled to a
continuum, but also have significant coupling to each other.
Note that ImfC12�!�g is comparable in magnitude to the
�m�!� and so is not a small correction. From Figs. 1 and
3(a) and using Eq. (4), it is now easy to understand Fig. 2.
The modes have opposite signs near the left defect and the
same sign near the right defect (see Fig. 1). Thus, the
interference term in Eq. (4) is negative (destructive inter-
ference) at the right defect for ! ’ 2:73c=d, resulting in a
large dip in the LDOS near this frequency. Similarly, the
interference term at the left defect is positive (constructive
interference) at this frequency, resulting in an enhanced
LDOS peak.

The effect of the interference term is seen clearly in
Fig. 3(b), where we plot the exact SE ratio, RSE�!; rL;R�,
versus frequency at the center of the left [rL � �xL; 0�] and
right [rR � �xR; 0�] defect for êk � ẑ. Also shown is the
reduced SE ratio, R�2�SE�!; rL;R�, calculated using Eq. (4)
with FDTD, showing that the reduced LDOS is an excel-
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lent approximation to the exact LDOS near the defects.
Note that to aid in comparison, we have removed the small
frequency offset mentioned earlier. Figure 3(b) also shows
R�NI�SE �!; rL;R�, which does not include the interference term
in Eq. (4). Note that in the right defect, the interference
term produces a large dip in the SE rate at ! � 2:734c=d
which reduces the SE rate at dip center by a factor of 7.3
from its value without this term.

We now turn to the quantum interpretation of the inter-
ference in the SE rate and the calculation of the probability
of emission into the different quasimodes. For a two-level
atom initially in state j1; 0i (atom in excited state; no
photons), coupled to the continuum of single-photon states
j0; f�i [atom in ground state; single photon in mode f��r�],
the state of the system at time t can be written as j �t�i�
��t�j1;0i	

R
d����;t�j0;f�i, where the temporal Fourier

transform of���; t� is given by ����;!� � i
�������������������
!�=2@	0

q
d� �

f���ra� ���!�=�!�!��, where 	0 is the permittivity of free
space and ���!� is the Fourier transform of ��t�, given by
���!� � i=�!�!a �W�!��, where W�!� is the shift-
width function [4]. From Eq. (3), the quantum state associ-
ated with the nonstationary quasimode Mm�r� of the open
structure can be expanded as j0;Mmi �

R
d�gm� j0; f�i. To
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obtain the probability of finding the system in state
j0;Mmi, we project the state function j �t�i onto j0;Mmi.
Using the expressions for ����;!� and for the reduced
LDOS, the Fourier transform of the probability amplitude
for finding the system in state j0;M1i is

�B1�!� � �

����������
!a

2@	o

s
2!a

c2�!�!a �W�!��

� �C11�!�M1�ra� 	 C12�!�M2�ra�� � d�: (7)

The first term in this expression gives the probability
amplitude for the direct decay of the atom into mode 1,
while the second gives the probability amplitude for decay
into mode 2 and subsequent transfer into mode 1. Thus,
there are two quantum paths to reach state j0;M1i and
these two paths interfere constructively or destructively
depending on the atom’s position and transition frequency.
As the relaxation of the atom into the ground state is
dominated by emission into the resonant modes (m �
f1; 2g), the SE ratio reflects this QPI via the third term in
Eq. (4). We therefore see that the large dip in the SE rate for
atoms in the right defect is due to the quantum interference
between two paths for the SE of the atom into the resonant
modes of the structure.

It could be argued that QPI is an integral part of the
modification of the SE rate in any cavity, or even for an
atom placed close to a mirror. This is true in that it is
interference of the free-space radiation modes that results
in the formation of the resonant modes of a cavity.
However, there is a qualitative difference between this
and the QPI discussed here. In a general microcavity
system, the QPI arises out of a complex interference be-
tween many continuum free-space modes and cannot be
accurately modeled using only a few of these modes. In
contrast the QPI discussed here is the interference arising
between a few quasimodes; the QPI between these few
quasimodes describes and explains the key features of the
SE dynamics of the system.

Because of the simplicity of the projected LDOS, it is
easy to see how the interference can be manipulated not
only to alter the SE rate at a given position, but also to
control the SE rate into a given quasimode. In the weak-
coupling regime, the SE rate of the atom is much slower
than the decay rate of light out of the modes. Using Eq. (7),
we then find that for t > 
m (where 
m 
 Qm=!m is the
quasimode lifetime), the probability of finding the photon
in quasimode m in a structure that is well described by N
quasimodes is given approximately by

Pm�t� ’ Ae
��SEt

��������X
N

p�1

Cmp�!a�Mp�ra� � d�
��������2
; (8)

where A is independent of m, and 1=�SE is the SE lifetime.
Thus, the probability of emission into a given quasimode
can be easily determined from the Mm�r� and Cmp�!� that

make up our projected LDOS and R�2�SE. By changing the
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structure or the emitter position slightly, the QPI can be
altered so as to reduce or enhance the emission into a
particular mode. Thus, our reduced LDOS makes it pos-
sible for us to see how to tailor the emission into individual
quasimodes.

The numerical results presented here are for a 2D struc-
ture so that we could compare to our exact multipole
results; however, the formalism, the FDTD approach, and
our conclusions apply to structures of any dimension. Thus
the effects discussed in this work should be experimentally
seen in suitably designed high-quality high-Q 3D PC slab
structures, similar to those recently used in the observation
of Rabi splitting [6]. We finally note that our results can be
extended to calculate efficiently a projection of the full
complex Green tensor, which can be used to simplify the
understanding and calculation of Rabi splitting [6] and
scattering due to roughness [16] in coupled-cavity dielec-
tric microstructures.
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