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Hyperpolarizability Effects in a Sr Optical Lattice Clock
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We report the observation of a higher-order frequency shift due to the trapping field in a 87Sr optical
lattice clock. We show that, at the magic wavelength of the lattice, where the first-order term cancels, the
higher-order shift will not constitute a limitation to the fractional accuracy of the clock at a level of 10�18.
This result is achieved by operating the clock at very high trapping intensity up to 400 kW=cm2 and by a
specific study of the effect of the two two-photon transitions near the magic wavelength.
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FIG. 1 (color online). Energy levels of Sr relevant to this
Letter. The clock transition at 698 nm couples the two lowest
energy states of the atom.
Cold atoms confined in optical lattices have become
tools of growing importance to several fields in physics
such as quantum computing [1], matter wave manipulation
[2], cavity QED [3,4], or precision measurements [5–9].
Examples of their interesting features are long quantum
coherence times, controllable collisions, controllable posi-
tion of the atoms, and Lamb-Dicke confinement. All the
related experiments share the same need for a constantly
improved control of the atom-lattice interaction. For in-
stance, trapping a single atom in a high-Q cavity in the
strong coupling regime has been achieved by adjusting the
trap parameters to make the potential ‘‘state insensitive’’
[3]. In another experiment, the lifetime of the quantum
coherences of atomic qubits is limited by the fluctuations
of the differential light shift due to the lattice [10]. The
energy shift of the atomic levels induced by the relatively
strong lattice field is a topical problem and is the subject of
this Letter.

The challenge is easily understood in the case of atomic
clocks, which are more specifically studied here. In this
domain, the recent proposal [11] and preliminary realiza-
tions [7–9] of optical lattice clocks open a promising route
towards frequency standards with a fractional accuracy
better than 10�17. A large number of atoms are confined
in the Lamb-Dicke regime, which, in principle, allows both
the high signal to noise ratio of optical clocks with neutral
atoms [12] and the cancellation of motional effects of
trapped ion devices [13–16]. For an optical lattice clock
with Sr atoms, the typical requirement in terms of trapping
depth is about 10Er, with Er the recoil energy associated to
the absorption of a lattice photon [17]. The corresponding
frequency shift of both clock states amounts to 36 kHz at
800 nm, while a relative accuracy goal of 10�18 implies a
control of the differential shift at the 0.5 mHz level, or 10�8

in fractional units.
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with �1 and �2 proportional to the (dynamic) polarizability
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and hyperpolarizability difference between both states of
the clock transition [11]. By the principle of the optical
lattice clock, �1 cancels when the trapping laser is tuned to
the ‘‘magic wavelength’’ �m. Although this remains to be
demonstrated experimentally, a control of this first-order
frequency shift to better than 1 mHz seems achievable [11].

The higher-order term is a priori more problematic with
no expected cancellation. A theoretical calculation of the
effect is reported in Ref. [11], predicting a frequency shift
of �2 �Hz=E2

r for a linear polarization of the lattice. The
calculation, however, was performed at the theoretical
magic wavelength of 800 nm. The actual value [18] �m �
813:428�1� nm (see [7,9] and below) lies near two two-
photon resonances which may considerably enhance the
effect and impede the realization of an accurate clock. The
first one couples 5s5p 3P0 to 5s7p 1P1 (Fig. 1) and is at a
wavelength of 813.36 nm or, equivalently, 30 GHz away
from the magic wavelength. Although this J � 0! J � 1
two-photon transition is forbidden to leading order for two
photons of identical frequencies [19], it is so close to the
magic wavelength that it has to be a priori considered. The
second one resonantly couples 5s5p 3P0 to 5s4f 3F2 at
818.57 nm and is fully allowed.

We report here an experimental study of higher-order
effects in a 87Sr optical lattice clock operating at a very
high trapping depth up to 1400Er and for a linear polar-
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FIG. 2. Motional spectrum of the atoms in the optical lattice.
Each point corresponds to a single measurement of 1 s total
duration. Black curve: Optimal operating conditions (probe
pulse of 10 ms duration and 2 �W power). The inset is a
zoom on the carrier. Grey curve: The first-order longitudinal
motional sidebands are enhanced by applying long probe pulses
of 200 ms at the maximum available power at 698 nm (2 mW).
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ization of the lattice. This depth is about a factor of 10
higher than in the other reported systems [7,9] which
enhances the sensitivity to higher-order frequency shifts
by 2 orders of magnitude. The high trapping depth is
reached thanks to an enhancement Fabry-Pérot cavity
around the 1D vertical lattice. The circulating power
reaches 16 W for a 650 mW input at 813 nm. The mode
has a waist radius of 90 �m corresponding to a maximum
U0 � 1400Er and an axial (radial) oscillation frequency of
260 kHz (540 Hz). An intracavity dichroic mirror separates
the lattice light from that which probes the clock transition.
It induces negligible intracavity loss at 813 nm while
ensuring that less than 10�3 of the incident power at
698 nm is reflected back to the atoms by the cavity mirror.
The lattice polarization is interferometrically filtered by an
intracavity quarter wave plate, which lifts the degeneracy
between the linear polarization states parallel to the ei-
genaxis of the plate by half a free spectral range. The
resulting polarization of the trapping light is linear to better
than 10�3. Its wavelength �L is controlled by means of a
wave meter with an accuracy of 10�3 nm.

Atoms are loaded into the optical lattice from the
magneto-optical trap (MOT) described in Ref. [20].
Throughout the loading cycle, the lattice is overlapped
with the MOT. Cold atoms at the center of the trap are
selectively optically pumped to the metastable 3P0;2 states
by means of two ‘‘drain’’ lasers of waist radius 50 �m that
are aligned to the lattice. They are tuned to the 1S0 �

3P1

and 3P1 �
3S1 transitions at 689 and 688 nm, respectively

(Fig. 1). Atoms in the metastable states remain trapped
provided their energy is smaller than the 200 �K lattice
depth. This leads to a continuous loading of the lattice at a
rate of about 105 atoms=s. After half a second of loading
time, the MOT and drain lasers are switched off, and the
atoms are repumped back to the ground state using two
lasers tuned to the 3P0;2 �

3S1 transitions at 679 and
707 nm. They are then cooled in the lattice to �10 �K
in 50 ms with the narrow 1S0 �

3P1 intercombination line
at 689 nm [21].

Following this preparation stage, we probe the 1S0 �
3P0 clock transition at 698 nm. The frequency of the probe
laser is referenced to an ultrastable cavity as described in
Ref. [22]. The probe beam is aligned parallel to the lattice
and has a waist radius of 200 �m. Its polarization is linear
and parallel to the lattice polarization. After the probe
pulse, the transition probability to 3P0 is measured in a
few milliseconds by laser-induced fluorescence. A first
detection pulse at 461 nm gives the number of atoms
remaining in the ground state and ejects these atoms
from the trap. Atoms in 3P0 are then repumped to the
ground state with the 679 and 707 nm lasers and detected
similarly. This method allows a transition probability mea-
surement which is insensitive to the atom number fluctua-
tions. The resonance is shown in Fig. 2. The central feature
(the carrier) is zoomed in the inset in the figure. Its line-
width is 260 Hz in optimal operating conditions: �L � �m,
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probe pulse of 10 ms duration, and 2 �W power. The
resonance plotted here was obtained at the maximum
trapping depth, and we observed no clear dependence of
its width and contrast withU0. The present limitation to the
width of the resonance is probably of technical origin,
since linewidths in the 10 Hz range have already been
observed in optical lattice clocks [7,8].

The carrier is surrounded by motional sidebands shifted
by the oscillation frequency along the lattice direction.
They are hardly visible in optimal operation but can be
enhanced by applying long pulses of 200 ms duration at the
maximum available power (2 mW) of the probe beam. The
resulting spectrum is plotted in gray in Fig. 2. The 1:5 ratio
between the red and blue sidebands show that 80% of the
atoms populate the jnz � 0imotional state along the lattice
axis, corresponding to a temperature of 8 �K. The trans-
verse temperature is 10 �K.

The effect of the trap on the clock transition is measured
by locking the frequency of the probe laser to the carrier for
various values of U0 and �L. The trap depth U0 is adjusted
to its desired value between 200Er and 1400Er by a linear
ramp of 1 ms duration between the cooling and probing
phases. This slightly decreases the transverse temperature
while the longitudinal motion is adiabatically cooled by
following the ramp. To lock the probe laser frequency, we
alternatively probe both sides of the resonance and com-
pute an error signal from the difference between two
successive measurements of the transition probability.
This also gives a measurement of the difference between
the atomic transition and the reference cavity frequency
which slowly fluctuates due to thermal effects. These
fluctuations behave essentially as a sine wave of peak to
peak amplitude 300 Hz and period 10 minutes. To derive
the frequency shift due to the lattice, we reject the cavity
frequency fluctuations by a factor 100 by a differential
method [23]. We interleave measurements at 4 different
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lattice depths. We run the clock for 19 cycles before U0 is
changed to the next of the four interleaved values. The
entire sequence is repeated typically 16 times. The cavity
fluctuations are then modeled as a polynomial which is
determined by a least-squares fit of the data [24]. The data
are corrected for the modeled cavity frequency fluctuations
and averaged. This yields 4 statistically independent mea-
surements [25] of the clock transition frequency versus U0

with a standard deviation of about 5 Hz. A typical set of
such points is shown in Fig. 3(a).

We perform a quadratic least-squares fit of each set of
four points which gives a measurement of the coefficients
�1 and �2 of Eq. (1). The coefficient �2 is plotted in
Fig. 3(c) and found compatible with zero for the whole
range [813.3, 813.5 nm] to within a few tens of microhertz.
An especially interesting wavelength region is around
813.36 nm, where the 3P0 !

1P1 two-photon transition is
expected. The contribution of a two-photon transition to �2

varies as ��1, with � the detuning of the lattice with
FIG. 3. (a) Typical experimental data used to derive the first-
and second-order frequency shift coefficients plotted in (b) and
(c). Shown here is the frequency shift of the clock transition vs
lattice depth for 5 different lattice wavelengths: 813.406 (four
lowest points in the graph), 813.413, 813.428, 813.436, and
813.444 nm (four highest points). Also shown is a linear fit of
each of these five sets of data. (b) First-order frequency shift vs
�L scaled back to U0 � Er. Also plotted is a linear fit of these
data (�2 � 1:1). The inset shows measurements of �m. �: this
work. �: Ref. [7]. �: Ref. [9]. (c) Higher-order frequency shift
vs �L scaled back to U0 � Er. All these points are compatible
with zero. Their average is�4�36� � 10�7 Hz (�2 � 1:02). The
arrow on the �L axis corresponds to the 3P0 !

1P1 transition at
813.360 nm. The vertical dotted line is at the magic wavelength
813.428 nm.
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respect to the resonance. We magnify this contribution by
systematically spanning a frequency range of �5 GHz
with a 1 GHz step around the expected value [Fig. 3(c)].
The null results of all these measurements demonstrate that
the higher-order shift due to the 3P0 !

1P1 transition is
less than 1 �Hz=E2

r for �L � �m. Despite its proximity to
the magic wavelength, this two-photon transition is forbid-
den enough to not be a problem.

This set of experiments around 813.4 nm can also be
used to derive an accurate value of �m. Having shown that
�2 is negligible for �L � �m, better estimates of �1 are
obtained with linear fits of each set of four points. They are
plotted in Fig. 3(b). We find �m � 813:428�1� nm in agree-
ment with previously published values [7,9] as shown in
the inset in Fig. 3(b). The improvement by one order of the
accuracy of this measurement is a nice illustration of the
amplification of the effects of the lattice offered by a deep
trapping potential.

We also studied the effect of the other two-photon
transition in this wavelength region, the 3P0 !

3F2 at
818.57 nm. When tuned 5 nm away from �m, we expect,
in addition to the effect of the two-photon coupling, a
trivial quadratic dependence of the atomic frequency vs
U0 due to the imperfect cancellation of �1 and to the
inhomogeneity of the laser intensity experienced by the
atoms. We do observe a substantial broadening and asym-
metry of the resonance due to this effect similar to what
was reported in Ref. [26]. The associated trivial quadratic
frequency shift amounts to 0:8 mHz=E2

r as measured sev-
eral gigahertz away on both sides of the two-photon
transition.

When tuned closer to the resonance, we clearly observe
the nontrivial quadratic frequency shift due to the two-
photon resonance itself. The effect is shown in Fig. 4.
Quadratic frequency shifts of several kilohertz and chang-
ing sign, depending on the side of the transition being
probed are observed, as shown in Fig. 4(b). This is a clear
signature of the higher-order effects due to the particular
transition under investigation. When tuned exactly onto
one of the five transitions corresponding to the hyperfine
structure of 3F2, the lattice laser induces severe loss (up to
90%) of atoms when the 698 nm probe laser is tuned to
resonance. This effect, which we attribute to three-photon
ionization from 3P0, was used to determine the position of
the five hyperfine substates shown by arrows in Fig. 4(a).
The hyperfine structure of 3F2 leads to a complex depen-
dence of the quadratic frequency shift on the lattice wave-
length around resonance. The contribution of the five
substates can interfere with each other, which may be the
cause of the oscillations of �2 seen in Fig. 4(a) on both
sides of the hyperfine manifold. We can deduce from our
measurements a conservative estimate of the contribution
of the 3P0 �

3F2 resonance to the higher-order effects at
�L � �m. The gray dashed curve plotted in Fig. 4(a) scales
as the inverse of the detuning of the lattice with respect to
the center of gravity of the hyperfine structure of 3F2 and
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FIG. 4. (a) Higher-order frequency shift around the 3P0 !
3F2

transition at 818.570 nm scaled back to U0 � Er. The five
vertical arrows on the wavelength axis correspond to the hyper-
fine substates of 5s4f 3F2 (F � 13=2 to F � 5=2 from left to
right). (b) Atomic frequency shift vs trapping depth for two
lattice wavelengths on both sides of the two-photon transition to
substate F � 13=2. The linear light shift has been removed for
clarity. The bold line is a fit of the data with a parabola.
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envelopes experimental points. When extrapolated to the
magic wavelength, it gives a contribution to �2 of 2 �Hz
or, equivalently, a quadratic frequency shift of 0.2 mHz for
a lattice depth of 10Er.

Finally, we have performed an extensive series of mea-
surements of the clock frequency as a function of the lattice
depth at �L � �m. The values of �2 derived from these
measurements are plotted in Fig. 5. Their weighted average
gives �2��m� � 7�6� �Hz. For a lattice depth U0 � 10Er,
the corresponding frequency shift is lower than 1 mHz (one
sigma) or 2� 10�18 in fractional units. This demonstrates
that the frequency shift due to the atomic hyperpo-
larizability constitutes no impediment to the accuracy of
a Sr optical lattice clock down to the 10�18 level. In
addition, the effective laser intensity seen by the atoms is
certainly controllable at the percent level [27]. The per-
FIG. 5. Higher-order frequency shift at the magic wavelength
scaled back to U0 � Er. The value of the open square is the
weighted average of the seven other points (�2 � 1:8).
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formance of the system would then be immune to higher-
order frequency shifts over a broad lattice depth range,
possibly up toU0 � 100Er. This would provide a powerful
lever for the experimental evaluation at the 10�18 level of
other effects associated, for instance, to the dynamics of
the atoms in the lattice or to cold collisions. Collisions are
expected to be negligible with polarized fermions, but they
have to be considered if one uses bosonic isotopes [8], such
as 88Sr. By varying the trapping depth, one can adjust the
tunneling rate and then control the overlap of the wave
functions of atoms confined in the lattice, allowing the
study of cold collisions in a new regime.
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