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Angular-Momentum–Mass Inequality for Axisymmetric Black Holes
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The inequality
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J
p
� m is proved for vacuum, asymptotically flat, maximal, and axisymmetric data

close to extreme Kerr data. The physical significance of this inequality and its relation to the standard
picture of the gravitational collapse are discussed.
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Introduction.—The following conjectures constitute the
essence of the current standard picture of the gravitational
collapse: (i) Gravitational collapse results in a black hole
(weak cosmic censorship), (ii) the spacetime settles down
to a stationary final state. If we further assume that at some
finite time all the matter fields have fallen into the black
hole and hence the exterior region is pure vacuum (for
simplicity we discard electromagnetic fields in the exte-
rior), then the black hole uniqueness theorem implies that
the final state should be the Kerr black hole. The Kerr black
hole is uniquely characterized by its mass m0 and angular
momentum J0. These quantities satisfy the following re-
markable inequality

��������
jJ0j

q
� m0: (1)

From Newtonian considerations, we can interpret this in-
equality as follows [1]: in a collapse the gravitational
attraction ( � m2

0=r
2) at the horizon (r � m0) dominates

over the centrifugal repulsive forces ( � J2
0=m0r3).

If the initial conditions for a collapse violate (1) then the
extra angular momentum should be radiated away in gravi-
tational waves. However, in an axially symmetric space-
time the angular momentum is a conserved quantity (the
Komar integral of the Killing vector, see, for example, [2]).
In this case angular momentum cannot be radiated: the
angular momentum J of the initial conditions must be
equal to the final one J0. On the other hand, the mass of
the initial conditions m satisfies m � m0 because gravita-
tional radiation carries positive energy. Then, from in-
equality (1) we obtain

������
jJj

p
� m: (2)

More precisely, (i) and (ii) imply that a complete, vacuum,
axisymmetric, asymptotically flat data should satisfy in-
equality (2), where m and J are the mass and angular
momentum of the data. Moreover, the equality in (2)
should imply that the data are a slice of extreme Kerr
spacetime. This is a similar argument to the one used by
Penrose [3] to obtain the inequality between mass and the
area of the horizon on the initial data. As in the case of
Penrose inequality, a counter example of (2) will imply that
either (i) or (ii) is not true. Conversely a proof of (2) gives
06=96(10)=101101(3)$23.00 10110
indirect evidence of the validity of (i) and (ii), since it is
very hard to understand why this highly nontrivial inequal-
ity should hold unless (i) and (ii) can be thought of as
providing the underlying physical reason behind it (see the
discussion in [4]). The main result of this Letter is that (2)
is true for data close enough to extreme Kerr data.

Inequality (2) is a property of the spacetime and not only
of the data, since both quantities m and J are independent
of the slicing. It is in fact a property of axisymmetric,
vacuum, black hole spacetimes, because a nonzero J (in
vacuum) implies a nontrivial topology on the data and this
is expected to signal the presence of a black hole. The
physical interpretation of (2) is the following: if we have a
stationary vacuum black hole (i.e., Kerr) and add to it
axisymmetric gravitational waves, then the spacetime
will still have a (nonstationary) black hole; these waves
will only increase the mass and not the angular momentum
of the spacetime because they are axially symmetric. Since
inequality (1) is satisfied for the Kerr black hole we get (2).

The Kerr black hole has been proved to be unique among
stationary solutions (see the review articles [5,6] and refer-
ences therein). There exists also linear stability studies for
the Kerr black hole [7,8]. The result presented here is the
first nonlinear one which proves the relevance of the Kerr
black hole among nonstationary solutions of Einstein
equations.

The variational principle.—Inequality (2) suggests the
following variational principle: The extreme Kerr initial
data are the absolute minimum of the mass among all
axisymmetric, vacuum, asymptotically flat, and complete
initial data with fixed angular momentum. With the extra
assumption that the data are maximal, this variational
principle can be formulated in a very simple form [9]. A
maximal initial data set for Einstein’s vacuum equations
consists in a Riemannian metric ~hab, and a trace-free
symmetric tensor field ~Kab, such that the vacuum con-
straint equations

~Db
~Kab � 0; (3)

~R� ~Kab
~Kab � 0; (4)

are satisfied; where ~Da and ~R are the Levi-Civita connec-
tion and the Ricci scalar associated with ~hab. In these
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equations the indexes are moved with the metric ~hab and its
inverse ~hab.

We assume that the initial data are axially symmetric,
that is, there exists an axial Killing vector �a such that

L �
~hab � 0; L�

~Kab � 0; (5)

where L denotes the Lie derivative. The Killing vector �a

is assumed to be hypersurface orthogonal on the data.
Under these conditions, the metric ~hab can be characterized
by two functions q, v; we specify them using Brill’s ansatz
[10]. Let �; z; � be cylindrical coordinates in R3. We write
the metric in the form

~h ab � evhab; (6)

where the conformal metric hab is given by

h � e�2q�d�2 � dz2� � �2d�2: (7)

In these coordinates we have �a � �@=@’�a. The norm of
�a with respect to the metric ~hab will be denoted by X

X � �a�b ~hab � ev�2: (8)

The function q is assumed to be smooth with respect to the
coordinates �; z. At the axis we impose the regularity
condition

q�� � 0; z� � 0: (9)

This condition implies that the conformal metric hab is
well defined in R3. At infinity we assume the following
falloff

q � o�r�1�; q;r � o�r�2�: (10)

These fall off conditions imply that the mass of the physi-
cal metric ~hab is contained in the conformal factor v. This
function is allowed to be singular at some points at the axis,
these singularities represent the extra asymptotic ends of
the data. In the present case, since we will study small
deviation from the extreme Kerr data, we only have one
extra end, the corresponding singular point of v will be
chosen to be at the origin.

The relevant part of the second fundamental form ~Kab is
characterized by a potential Y which is calculated as fol-
lows. Define the vector ~Sa by

~S a � ~Kab�
b � X�1 ~�a ~Kbc�

b�c; (11)

where ~�a � ~hab�
b. Then, define Ka by

Ka � ~�abc ~Sb�c; (12)

where ~�abc is the volume element of ~hab. Using Eqs. (3)
and (5) and the Killing equation we obtain

~D 	bKa
 � 0: (13)

Hence, there exists a scalar function Y such that Ka �
~DaY. The angular momentum J of the data is given by the
10110
value of Y at the axis. More precisely, we have

J �
1

8
	Y�� � 0;�z� � Y�� � 0; z�
; z � 0: (14)

Summarizing, for any data (~hab; ~Kab) which satisfy the
assumptions above, we have a pair (v; Y). The function v is
calculated from the metric ~hab, it contains the mass of the
data. The potential Y is calculated from ~Kab and it contains
the angular momentum of the data. These functions will be
our fundamental variables. For a given (v; Y) we can
calculate q from the constrain equation (4) (see the dis-
cussion in [9]).

Consider the functional defined in [9]

M �v; Y� �
1

32�

Z
R3
�j@vj2 � ��4e�2vj@Yj2�d�; (15)

where d� � �dzd�d� is the volume element in R3 and @
denotes partial derivative with respect to � and z; that is
j@vj2 � v2

;z � v
2
;�. Note that this functional does not de-

pend on q. In [9] it has been proved that the following
bound holds for every maximal data

m �M: (16)

Equation (16) allows us to formulate the variational prin-
ciple mentioned above in terms of the functional M which
depends only on two free functions (v; Y): we want to
prove that the extreme Kerr data are a minimum of M
among all (v; Y) which satisfy the following boundary
conditions.

Let v0 and Y0 denote the extreme Kerr initial data. These
are explicit functions (see [11]) which depend on a free
parameter J, the angular momentum of the data. As it was
pointed out above, the function v0 is singular at the origin
since extreme Kerr data has two asymptotic ends, never-
theless the mass functional (15) is finite and gives the total
mass of the extreme Kerr data M�v0; Y0� �

������
jJj

p
. Set

v � v0 � �; Y � Y0 � y: (17)

The functions (�; y) are required to have a falloff compat-
ible with asymptotic flatness. For y we need also to pre-
scribe boundary conditions at the axis in order to impose
that the angular momentum of Y is the same as the one of
Y0. From Eq. (14) we get that y should vanishes at the axis.
To simplify the analysis we will further assume that y
vanishes in a whole neighborhood of the axis. Note that
for � no extra boundary conditions are imposed, we just
require that it is a regular function in R3. These consid-
erations are made precise in the following definition of the
Banach space B. Let � be a (unbounded) domain in R3.
We introduce the weighted spaces of C1 functions in �

kfkC1
����
� sup

x2�
f	��jfj � 	���1j@fjg; (18)

with �<�1=2 and 	 �
��������������
r2 � 1
p

, r �
����������������
�2 � z2

p
. Let

�0 > 0 be a constant and K�0
be the cylinder � � �0 in
1-2
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R3. We define the domain ��0
by ��0

� R3 n K�0
. The

perturbation y is assumed to vanish in K�0
. To simplify the

notation we will write ’ � ��; y� and u0 � �v0; Y0�. The
Banach space B is defined by

k’kB � k�kC1
��R

3� � kykC1
����0

�: (19)

We consider M as a functional on M:B! R. Our main
result is given by the following theorem proved in [11].

Theorem 1.— The functional M:B! R defined by (15)
has a strict local minimum at u0. That is, there exist � > 0
such that

M �u0 � ’�>M�u0�; (20)

for all ’ 2 B with k’kB < � and ’ � 0.
Using, essentially, inequality (16), from this theorem we

deduce the following corollary.
Corollary 1.— Let (~hab; ~Kab) be a maximal, axisymmet-

ric, vacuum, initial data with mass m and angular momen-
tum J, such that the metric satisfies (6), (7), (9), and (10).
Define ’ as above. Then, there exists � > 0 such that for
k’kB < � the inequality (2) holds. Moreover, m �

���
J
p

in
this neighborhood if and only if the data are the extreme
Kerr data.

The main ideas in the proof of Theorem 1 are the
following. Consider the real-valued function

i’�t� �M�u0 � t’�: (21)

The first variation of M is given by i0’, where prime
denotes derivate with respect to t. In [9] it has been proved
that the extreme Kerr initial data is a critical point of M,
that is we have

i0’�0� � 0; for all ’ 2 B: (22)

If we compute the second variation i00’�t� it is not obvious
that it is positive at the critical point t � 0. However, using
a remarkable identity found by Carter [12], and the equiva-
lence (up to boundary terms) between the functional M
10110
and Carter’s Lagrangian (see [9]) it is possible to prove (see
[11]) that

i00’�0� � 0; for all ’ 2 B: (23)

Equation (23) can be taken as an interpretation of Carter’s
identity. This equation is a crucial necessary condition to
guarantee that u0 is a local minimum, however it is not
sufficient. In order to provide a sufficient condition we
need to prove that i00’�0� is coercive with respect to some
appropriate norm. This last step was done in [11] (see
Lemma 3.1 in this reference).
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