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Optimal Estimates of Free Energies from Multistate Nonequilibrium Work Data
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We derive the optimal estimates of the free energies of an arbitrary number of thermodynamic states
from nonequilibrium work measurements; the work data are collected from forward and reverse switching
processes and obey a fluctuation theorem. The maximum likelihood formulation properly reweights all
pathways contributing to a free energy difference and is directly applicable to simulations and experi-
ments. We demonstrate dramatic gains in efficiency by combining the analysis with parallel tempering
simulations for alchemical mutations of model amino acids.
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Introduction.—Free energy simulations play an ever
increasing role in studies of condensed matter, particu-
larly those concerned with problems in molecular biophys-
ics. With the advent of accurate force fields, increases in
computer power, and continuous methodological ad-
vances, ‘‘free energy simulations [have] come of age [1].’’
Because of the flexibility of the design and control of the
simulations at the atomistic level, they can provide infor-
mation not available from experiment. In parallel develop-
ments, a new generation of single molecule studies [2,3]
are using advances in theory [4–8] to extract free energy
information from the experiments. A recent example is a
single molecule pulling experiment [2] that determined the
folding free energies of RNA strands. The measured un-
folding and refolding nonequilibrium work data [6] were
analyzed with a generalization of Bennett’s acceptance
ratio method [4] to finite switching [7]. The Bennett
method and its generalization were shown recently to
provide the maximum likelihood estimator of the free
energy difference, given a set of work data between two
states [9]. Surprisingly, the Bennett method, which dates
from 1976, has rarely been used in computations of free
energy differences in biological systems; calculations have
been based primarily on the exponential difference formula
of Zwanzig [10] or the thermodynamic integration ap-
proach of Kirkwood [11].

Maximum likelihood estimators, under very general and
verifiable conditions, are asymptotically consistent and
efficient estimators [12]; i.e., they provide the smallest
variance of any unbiased estimate of the parameters under-
lying the distribution of a large set of sampled data. In this
Letter, we provide the maximum likelihood estimator of
free energy differences from nonequilibrium work data
sets for multiple states and verify that it is asymptotically
unbiased and efficient. We also show that the method can
be used to combine all of the sampled data from parallel
tempering simulations [13,14] in an optimum way to ob-
tain free energy differences. The analysis is directly appli-
cable to present-day simulations of free energy differences
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of interest in molecular biophysics, e.g., the properties of
mutants or the study of multiligand binding. In what fol-
lows, we first derive the method and then demonstrate its
utility in the analysis of parallel tempering simulations of
alchemical mutations of model amino acids.

Derivation.—Consider a set of N thermodynamic states,
which correspond to systems with different Hamiltonian,
possibly sampled at different external conditions (e.g.,
variation of the temperature). A switch from one state to
another can be produced by either an instantaneous (sud-
den) change of the Hamiltonian and the external condi-
tions with the two systems in the same microstate [4,10]
or a sequence of gradual changes that lead from the
Hamiltonian and external conditions of the initial state to
the final state [5,6,11].

Consider the pair of thermodynamic states i and j and a
forward and reverse switch, such that a fluctuation theorem
[4,6,15] of the following form holds for the probability
distributions of a path-dependent quantity Wij that is odd
under path reversal (Wji � �Wij):

p�Wijji! j�e�Wij � p�Wijjj! i�e�Aij ; (1)

with p�Wijji! j� the probability of measuringWij along a
path sampled in the switch from i to j, and Aij an appro-
priate state-dependent quantity; Wij can be thought of as a
generalization of the work and Aij as the free energy
difference. In the instantaneous switch case, Wij and Aij
are

Wij�x� � �jEj�x� � �iEi�x�; Aij � lnZi � lnZj;

(2)

with x a microstate (coordinates and momenta) sampled at
equilibrium in the initial ensemble, Ej the energy of state j,
�j the inverse temperature of bath j, lnZj the logarithm of
the partition function of state j; with these definitions
Eq. (1) holds, as shown in Ref. [4]. In the gradual switch
case performed in contact with a constant temperature heat
bath, Wij�x� � �W, with W the work along the pathway,
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and Aij � ��Fij, with �Fij the Helmholtz free energy
difference between states i and j. More general situations
for which Eq. (1) holds are discussed in Refs. [6,15].

We follow the analysis of Shirts et al. [9] (see also
Ref. [16]) to obtain the conditional probability that a
work value Wij along a path between states i and j resulted
from a sampling of a forward (i! j) switching process.
From the Bayes theorem [17], the ratio of probabilities of
the forward to the backward directions of the switch given
the work value and the end states i; j is

p�i! jjWij�

p�j! ijWij�
�
p�Wijji! j�p�i! j�

p�Wijjj! i�p�j! i�
; (3)

with p�i! j� the probability that the path between states i
and j was sampled in the direction from i to j; for nota-
tional simplicity we omit the explicit dependence of all
probabilities on the given pair of thermodynamic states
fi; jg and on Aij. A given work value between the states i
and j can be sampled in either the direction i! j or the
direction j! i, so that the numerator and denominator on
the left-hand side of Eq. (3) sum to 1. Following Ref. [9],
Eqs. (3) and (1) can be used to obtain

p�i! jjWij� � f��Wij � Aij �Mij�; (4)

Mij � lnntot
ij � lnntot

ji ; (5)

with f the Fermi function f�x� � 1=�1� ex�, and ntot
ij the

total number of uncorrelated work data in the direction i!
j. For the purpose of the maximum likelihood estimate of
lnZi, the ratio p�i! j�=p�j! i� can be substituted with
ntot
ij =n

tot
ji without loss of rigor [9,16]. Equation (4) resem-

bles Bennett’s acceptance ratio [4] of a switch move in a
simultaneous Monte Carlo sampling of i and j that mini-
mizes the variance of their free energy difference.

We can now write the joint likelihood p of observing
forward switches from all states i to every other state j
given the work data between these states as

p �
Y

i

Y

j�i

Y

nij

f��Wij;nij � Aij �Mij�; (6)

with Wij;nij the work values sampled along the nij paths for
the switches i! j. This equation, which follows from
Eq. (4) for independent work data, also gives the proba-
bilities of partitioning the work data for all pairs of states
into those resulting from forward and from reverse
switches, since the reverse process with i > j corresponds
to a forward process with j > i.

We now determine the set of lnZi that maximizes the
probability in Eq. (6), or equivalently the logarithm of this
probability. This is the central result of the present develop-
ment. As can be seen from Eq. (2), Eq. (6) remains invari-
ant when we multiply every partition function by the same
constant. We can thus fix one of the lnZi (e.g., set lnZ1 to
zero) and maximize the logarithm of Eq. (6) with respect to
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the remaining ones. Since the derivatives of the objective
function are available in closed form to all orders, we can
use the Newton-Raphson method to search for a stationary
point. Using the properties of the Fermi function, namely,
@ lnf�x�=@x � �f��x� and f0�x� � �1=�2� 2 coshx�,
we obtain the first and second derivatives of lnp:

Fa �
@ lnp
@ lnZa

�
X

ij

qaijsij;

sij �
X

nij

f�Wij;nij � Aij �Mij�;

qaij � �
@Aij
@ lnZa

� �j;a � �i;a;

(7)

Hab �
@2 lnp

@ lnZa@ lnZb
�
X

ij

qaijq
b
ijtij;

tij �
X

nij

�1

2� 2 cosh�Wij;nij � Aij �Mij�
;

(8)

with a; b the indexes of the states with respect to which we
obtain the derivatives and �i;a the Kronecker delta symbol.
The full set of components of the forces Fa [Eq. (7)] and of
the Hessian Hab [Eq. (8)] can be efficiently calculated in a
single scan through all pairs of states due to the sparseness
of the array fqaijg. Furthermore, the Hessian of Eq. (8) is
always negative definite; i.e., direct substitution of qaij, q

b
ij

in Eq. (8) gives that for an arbitrary nonzero vector y of RN

the product yTHy �
P
ijtij�yi � yj�

2. This result is strictly
smaller than zero if at least one of the �yi � yj� is different
from zero. The latter is always the case if we fix one of the
components of y to zero, which is possible given the
invariance of Eq. (6) to rescaling of all the partition func-
tions. This means that the logarithm of Eq. (6) has only a
single stationary point, which is a maximum. The maxi-
mum of the probability is obtained efficiently by iteration
of the Newton-Raphson method:

�lnZa�n�1 � �lnZa�n � �
X

b

�H�1
ab �n�Fb�n; (9)

with �lnZa�n the values of the partition functions at itera-
tion n, and � a scaling factor that limits the maximum step
size and increases the radius of convergence.

The limit of the sequence of Eq. (9) gives the maximum
likelihood estimate of the logarithms of the partition func-
tions of all the systems and thus the maximum likelihood
estimate of their free energies. The maximum likelihood
estimate is asymptotically unbiased with the constraint that
the free energies of the system cannot become infinite [12]
(which is always the case in practice). Furthermore, the
current estimator asymptotically has the minimum vari-
ance since the third order derivatives of the log likelihood
are finite for any values of the work or the parameters [12].
Thus, for the limit of a large data set the present analysis
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gives the optimal asymptotically unbiased estimate of the
free energies.

For N � 2 systems the equation Fa � 0 formally equals
that of the Bennett acceptance ratio method, and thus, as
Bennett showed [4], it converges asymptotically to the free
energy perturbation method [10] (or the Jarzynski equality
[5]) in the limit of equilibrium sampling from only one
system.

Example.—We illustrate the method by applying it to
the analysis of three parallel tempering simulations [13,14]
corresponding to alchemical mutations in vacuum between
pairs of the capped amino acids [18] valine (V), threonine
(T), and asparagine (N) as shown in Fig. 1; capped amino
acids are widely used models in biophysical studies. Here,
we determine the room temperature free energy differences
�FV!T and �FV!N, and their variances as a function of
increasing the number of pathways to demonstrate the
power of the current approach.

We sample the canonical ensembles of each amino acid
using a molecular-dynamics–based parallel tempering al-
gorithm [13,14] that readily equilibrates each state despite
the high rotational barriers of the �1 angles [19,20].
Parallel tempering is performed with 12 heat baths
T0�255 K, T1 � 300 K, Tn�1�300��n�50�K, n 2
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FIG. 1. Sampled thermodynamic states for capped amino acids
valine (V), threonine (T), and asparagine (N). The amino acids
are modeled with the CHARMM energy function [18,23] using a
parametric potential: V��V;�T;�N��V

b�Vnb
EE�

PV;T;N
X Vvdw

XX �PV;T;N
X �X�Velec

XX �V
nb
XE�, with �V, �T, and �N the parameters that

scale the nonbonded and electrostatic energies of the amino acid
of interest, Vb the bonded energy terms, Vnb

EE the nonbonded
energy terms of the environment E (backbone), Vvdw

XX and Velec
XX

the van der Waals and electrostatic energy terms within the side
chain of amino acid X (from the set fV;T;Ng), and Vnb

XE the
nonbonded energy terms of side chain X with the environment.
We implement the potential with the BLOCK facility [24] of the
CHARMM program [18]. The bold side chains have �X � 1, the
dashed ones have �X � 0; for example, the state labeled T has
��V; �T; �N� � �0; 1; 0�. The lower part of the picture shows
several thermodynamic states from the parallel tempering simu-
lation. The arrows show a small subset of all the possible
switching pathways that contribute to the evaluation of the
300 K free energy differences.
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f1; 2; . . . ; 10g; the temperatures are controlled via
Langevin dynamics with a friction coefficient of 40 ps�1.
The integration time step is 2 fs; SHAKE constraints [21] are
applied for bonds involving hydrogen atoms. Every 10 ps
we attempt to swap either all the baths (T2i; T2i�1) or all the
baths (T2i�1; T2i), with i integer. The length of each simu-
lation is 360 ns (36 000 swap attempts). We save snapshots
every 2 ps and obtain equilibrated ensembles of
160 000 snapshots for each heat bath taken from the last
320 ns of the simulation.

Figure 2 shows several scatterplots of the simultaneous
estimates of the 300 K free energy differences from equi-
librium samples at NT temperatures, using Np data points
for each transition. The centroid of the NT � 12, Np �

5000 set is close to the centroid of each scatterplot, which
shows that the estimate is already unbiased for Np � 500.
The estimates of the free energy at 300 K from the
coordinates of this centroid are �FV!T � �16:33�
0:01 kcal=mol and �FV!N � �73:78� 0:01 kcal=mol;
the values of the free energy are lower for the larger groups
(see Fig. 1), essentially due to their more negative energies.

A summary of the scatterplots of Fig. 2 and of other
types of analysis of the sampled data is presented in
Table I. The free energy perturbation method [10] is sys-
tematically biased for the small samples [22] and gives
incorrect results even when the complete data set is used.
The average of the forward and backward data [22] is
FIG. 2 (color online). Scatterplots of the 300 K free energy
differences for the V! T and V! N transitions (see Fig. 1).
Each scatterplot is build from 10 000 estimates of the free energy
differences using random subsets of the work data. These subsets
have length Np for all possible pairs of the 3� NT states of the
three dipeptides and NT heat baths. The NT � 1 set contains only
the 300 K ensembles of V, T, and N; the sets with more than one
temperature contain the ensembles of the NT lowest temperature
heat baths. The symbol (X) marks the centroid of the set with the
least scatter.
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TABLE I. Table of the 300 K free energy estimates in
kcal=mol from equilibrium samples of Ns peptides at NT tem-
peratures, using Np data points for each transition. The standard
deviations � were calculated from 10 000 random samples; those
in parentheses are analytical estimates from one sample [4].

Ns NT Np h�FV!Ti �V!T h�FV!Ni �V!N

1a 1 500 �14:22 0.85 �70:68 0.86
1a 1 1:6� 105 �16:86 �71:72
1b 1 500 �18:25 0.85 �76:59 1.23
1b 1 1:6� 105 �17:426 �74:90
2c 1 500 �16:23 0.60 �73:63 0.75
2c 1 1:6� 105 �17:14 �73:31
2d 1 500 �16:31 0.31 �73:81 0.51
2d 1 5000 �16:30 0.10 �73:78 0.16
2d 1 1:6� 105 �16:30 (0.02) �73:78 (0.04)
3e 1 500 �16:31 0.30 �73:80 0.44
3e 3 500 �16:32 0.11 �73:79 0.16
3e 4 500 �16:32 0.08 �73:79 0.10
3e 8 500 �16:33 0.04 �73:78 0.05
3e 12 500 �16:33 0.04 �73:78 0.04
3e 1 5000 �16:30 0.09 �73:78 0.13
3e 3 5000 �16:32 0.03 �73:79 0.05
3e 4 5000 �16:32 0.02 �73:79 0.03
3e 8,12 5000 �16:33 0.01 �73:78 0.01

aFree energy perturbation, initial.
bFree energy perturbation, final.
cFree energy perturbation, average.
dBennett’s acceptance ratio.
eMultistate acceptance ratio.
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somewhat better but still considerably less accurate than
the Bennett acceptance ratio analysis of the same data set.
Inclusion of more pathways in the multistate acceptance
ratio analysis improves the statistics and keeps the estimate
consistent. The striking feature of this table is the scaling of
the multistate acceptance ratio standard deviation �; it is
approximately proportional to N�1

T N�1=2
p for a wide range

of temperatures.
To estimate the efficiency of this method, we used

random subsets of the microstates instead of the random
subsets of the work used for Fig. 2 and Table I. We picked
500 random structures from each thermodynamic state to
create the arrays of the work for all pathways; these work
data are correlated. The estimate of �FV!N from 10 000
repetitions of this procedure is �FV!N � �73:78�
0:10 kcal=mol. This corresponds to a reduction of the
standard deviation by a factor of 5.1 compared to that of
the Bennett acceptance ratio between V and N at 300 K
shown in Table I (entry 2d, 1, 500); thus, the analysis of
1 ns of total simulation obtains the same accuracy as 26 ns
analyzed with the Bennett method between the two end
states.

Conclusions.—We have presented the asymptotically
optimal way to obtain the free energy differences from
samples of the work data between multiple states. The
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resulting multistate acceptance ratio method is numerically
efficient and stable. We have demonstrated the applicabil-
ity of this approach to the analysis of parallel tempering
simulations and have shown that it provides estimates of
the resulting free energy differences that are more precise
and accurate than those from the Bennett method between
two states. We are applying the approach to a range of
problems (e.g., relative solvation free energies of amino
acids). The method can be used also to enhance multi-
ligand binding simulations or the analysis of experimental
work data [2,3], as an extension of the approach of
Hummer and Szabo [8].
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