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We show that entanglement entropy of free fermions scales faster than area law, as opposed to the
scaling Ld�1 for the harmonic lattice, for example. We also suggest and provide evidence in support of
an explicit formula for the entanglement entropy of free fermions in any dimension d, S �
c�@�; @��Ld�1 logL as the size of a subsystem L! 1, where @� is the Fermi surface and @� is the
boundary of the region in real space. The expression for the constant c�@�; @�� is based on a conjecture
due to Widom. We prove that a similar expression holds for the particle number fluctuations and use it to
prove a two sided estimate on the entropy S.
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In recent years a number of parallel findings have em-
phasized the importance of entanglement entropy [1–10].
Although originally studied in the context of black hole
physics [1], this quantity also plays an important role in
quantum information as a measure of the number of maxi-
mally entangled pairs that can be extracted from a given
quantum state [2].

The behavior of entanglement entropy is closely related
to the criticality behavior of quantum systems: for a gapped
system one expects an area scaling law due to a finite
correlation length �. In the 1D case [3], this behavior
changes drastically near criticality where the absence of
gap leads to long range correlations, and so the entangle-
ment does not saturate. Many interesting results have been
obtained for 1D models. For classes of critical models,
where conformal field theory (CFT) methods are appli-
cable, the entropy was found to exhibit a logarithmic
behavior, with a coefficient depending on the central
charge of the CFT models [4,5]; recently a modification
of these results in case of strong disorder was found [6].
The bipartite structure of the ground state of Fermion
models was studied in several works [7–9]. A connection
between the entropy of spin chains and random matrix
theory was established in [10].

Fewer results were obtained in dimensions d > 1,
although from the field theoretic point of view these are
very interesting. Indeed, initial investigation of the entropy
as a correction to the Bekenstein-Hawking entropy, sug-
gested that the entropy of a scalar field is proportional to
the boundary area for spherical or half-space regions
[1,11]. Recently, it has been rigorously proved [12] for a
harmonic lattice model, that the entropy of a cube with side
L behaves as the boundary area, i.e., as Ld�1.

In this Letter we examine the dependence of entangle-
ment entropy on dimension and geometry in a simple case
of a gapless system consisting of free fermions.

Let us summarize our main results: First, we prove that
S� Ld�1 logL [13] for cubelike domains [(3) below]. We
then present a heuristic argument for the more explicit
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formula S� d
3L

d�1 logL. We note that results which are
derived for cubes do not necessarily describe the scaling
for general boundaries: indeed we find that S � Ld�� for
fractal-like boundaries, where � 2 �0; 1� (described be-
low) characterizes regularity of the boundary. However,
the results for cubelike domains should reflect the correct
scaling for regions with sufficiently regular boundaries.
For general piecewise smooth boundaries we prove
O�Ld�1 logL� � S � O�Ld�1�logL�2�, see (6) and (9),
(this estimate was independently derived in [9] for d di-
mensional cubes in the lattice case).

Finally, making a connection with a conjecture of
Widom [14], we suggest an explicit geometric formula
for the entropy as L! 1:

S�
Ld�1 logL

�2��d�1

1

12

Z
@�

Z
@�
jnx 	 npjdSxdSp; (1)

where @�, @� are the boundaries of the Fermi sea and the
region considered, np, nx are the unit normals to these
boundaries. We present evidence supporting this conjec-
ture and prove a similar formula for the fluctuations in
particle number in the subsystem, which also gives bounds
on S. Recently the formula (1) was checked numerically
for 2D and 3D [15] and a perfect agreement concerning
both the order and the coefficient was found. Widom’s
conjecture is closely related to the problem of recovering
data from a measurement during a finite time interval and
in a finite frequency set. This problem, known as time-
frequency limiting, is of basic importance in signal theory,
and it was studied extensively [16]. It turns out that opera-
tors appearing in calculations of entanglement entropy for
free fermions are exactly the same as the ones studied in
[16], which is natural since one studies the properties of a
field in restricted sets of real space and momentum space.

The ground state of a translation invariant Hamiltonian
describing a noninteracting fermion field (on a lattice
or in the continuum), with dispersion relation ��k�, isQ
��k���Fa

y
k j0> . Here �F is the Fermi energy. This defines
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the Fermi sea region � 
 fkj��k� � �Fg in momentum
space. We also assume that the system is gapless [17].
The bipartite structure of the ground state can be studied
by fixing a region � in real space and computing the
reduced density matrix �� 
 Tr�F �Rdn���� where F ���
is the fermion Fock space associated with the region
� (see Fig. 1). The entanglement entropy S 

�Tr�F ������ log�� is given in this case [8] by S�L� 

Trh�PQP�, where h 
 h1 � h2 with h1�t� 
 �t logt and
h2�t� 
 ��1� t� log�1� t�. Here P is a projection opera-
tor on the modes inside the Fermi sea �, and Q is a
projection on the region � scaled by a factor L. The
operator PQP is related to the fermion correlation function
g�x� x0� 
 hayx ax0 i 
 hxjPjx

0i so that hxjPQPjx0i 
R
� g�x� x

00�g�x00 � x0�dx00. The density of particles is
n 
 vol���, and one may rescale L appropriately, as to
set n 
 1, which we will assume from now on.

Results for cubic domains.—Consider the case of a
rectangular box with sides Lj, i.e., � 
 �0; L1� � 	 	 	 �

�0; Ld� and � 
 �0; 1�d. Let S1�L� be the entropy in the 1D
case and let S be the entropy corresponding to �, � as
above. Then we have the following:

Theorem.—Under the above assumptions

1

2d

Xd
j
1

S1�Lj�
Y
i�j

N�Li� � S �
Xd
j
1

S1�Lj�
Y
i�j

N�Li�; (2)

where N�Lj� is the average number of particles. Note, in
particular, that for � 
 �0; L�d

1

2

�
L

2�

�
d�1

S1�L� � S � d
�
L

2�

�
d�1

S1�L�: (3)

Proof: Note that we can make separation of variables
Q 
 d1Qj where Qj is a projection on coordinate j, and P
factors in a similar way. Hence PQP 
 d1Tj where Tj 

PjQjPj. Note the following:

Lemma.—For ai 2 �0; 1� one has

1

2d
G�a1; . . . ; ad� � h2

�Yd
i
1

ai

�
� G�a1; . . . ; ad�; (4)

where G�a1; . . . ; ad� 

Pd
j
1 h2�aj�

Q
i�jai. To prove (4),

one has to check it for two variables a1, a2 and then
proceed by induction.
FIG. 1. The Fermi sea � in momentum space, and a region �
in real space.
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We observe that the eigenvalues of PQP are of the form
ai;1 . . . ai;d with ai;j being some eigenvalue of Tj. Writing
the entropy S as

P
h�ai;1 . . .ai;d�, using (4) and

h1�
Qd
i
1 ai� 


Pd
j
1 h1�aj�

Q
i�jai, and recalling that the

average number of particles [8] N 
 TrTj, (2) follows.
Result (2) shows that the entropy may be evaluated using

the 1D expressions. This reflects the compatibility of �, �
with factorizing the fermionic modes into the different
coordinates. It is now a matter of substituting the numerous
results obtained in the 1D case. For the lattice case, it
follows from the many works on the subject that for
fermions on a 1D lattice, or equivalently for an XX spin
chain (via the Jordan-Wigner transformation), S1�L� 

1
3 logL� o�logL�, see in particular [18]. In the continuous
case the same expression is obtained by formally substitut-
ing h�t� in the 1D result of [19,20].

For any body composed of a union of cubes Ci of side Li
we have, using the subadditivity of entropy [21],
S�
S
Ci� �

P
S�Ci�, thus we have an upper bound that

depends on the number of cubes needed to describe the
body: using (3) we find S�

S
Ci� �

d
3 �

1
2��

d�1�P
Ld�1
i log�Li� � o�L

d�1
M logLM�, LM 
 maxiLi. A lower

bound proportional to Ld�1
m logLm, Lm 
 miniLi follows

from (6) and (9), below.
Scaling coefficient.—Here we derive heuristically

S 

d
3

�
L

2�

�
d�1

logL� o�Ld�1 logL� (5)

for � 
 � 
 �0; L�d. Since the eigenvalues of Tj are
strictly less than one, the series Trh2�PQP� 
 Tr�d1Tj� �P
1
n
2

1
n�n�1� Tr�d1T

n
j � converges. By [19] [see (11) below

for d 
 1 and f�t� 
 tn], as L! 1, TrTnj 

L

2��
logL
�2 �Pn

1
1
k� o�logL�. Hence Tr�d1T

n
j � 
 �

L
2��

d � � L2��
d�1�

logL
�2 �

Pn
1

1
k� � o�L

d�1 logL�. Substituting the latter in the
series for h2 and calculating the sums involved we find
Trh2�PQP� 


d
6 �

L
2��

d�1 logL� o�Ld�1 logL�. Adding this
to Trh1�PQP�, which is computed directly and gives the
same value, (5) follows [22]. Further control of the remain-
der term in TrTnj as L! 1 is required to make this
calculation rigorous [23].

Results for general boundaries.—We now turn to the
case of general bounded Fermi sea � and region �. It is
known [8] that the variance in particle number, given by
��N�2 
 TrPQP�1� PQP� can be used to obtain a lower
bound on S.

Theorem.—For general sets � one has

4��N�2 � S � O�logL���N�2: (6)

We derive also an explicit formula (9) which implies, in
particular, that ��N�2 
 O�Ld�1 logL�.

The proof of (6) in the lattice case is immediate using the
inequalities of the form 4t�1� t� � h�t� � �� Ct�1�
t� log�, valid for � > 0, with C being a constant [24].
One substitutes the operators PQP instead of t and calcu-
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lates the trace. Note that tr��� � �Ld for a finite lattice of
size L, thus taking � < logL

L , (6) follows. The proof of (6) in
the continuous case is new: note first that the kernel of the
operator PQP is given by

hpjPQPjp0i 
 ���p����p
0�

�
L

2�

�
d Z

�
eiL�p�p

0�	xdx; (7)

where �A is defined for any set A as �A�x� 
 1 if x 2 A
and �A�x� 
 0, otherwise. For the continuous case the
mentioned inequality [24] is not helpful, since the Hilbert
space associated with any set � is infinite dimensional, so
Tr� 
 1. We proceed as follows: write instead

h�t� � �
����������������
t�1� t�

p
� Ct�1� t� log�; (8)

valid for small enough � (with a different constant C).
We then take the trace of both sides. It remains to esti-
mate Tr

����������������������������������
PQP�1� PQP�

p
. We have the following:

Tr
����������������������������������
PQP�1� PQP�

p
� Tr

��������������
PQ�P
p

where Q� is a projec-
tion on a box containing �, and we have used operator
monotonicity of t! t1=2 (see, e.g., [25]), and that
PQ�P � PQP (as operators). Next we note that the op-
erators PQ�P and Q�PQ� have the same positive eigen-
values counted with multiplicities [26]. Thus, we have
Tr

������������������������������������
PQP�1 � PQP�

p
� Tr

������������������
Q�PQ�

p
� Tr

���������������������
Q�P�Q�

p
,

where we have used the monotonicity again. It remains to
evaluate Tr

���������������������
Q�P�Q�

p
: this can be done using bounds on

the singular values of the operator Q�P�Q�, which in this
case are also the respective eigenvalues. It follows from
[27] that for any �> d=2 the eigenvalues of Q�P�Q�

satisfy �n � Cn�1=2��=dLd=2��. Taking �> 3d=2 we find
Tr

���������������������
Q�P�Q�

p
<Ld�	 for any 	 > 0, and thus we can

choose, e.g., � < L�	�1, and (6) follows.
Having established ��N�2 as a way of obtaining bounds

we proceed to evaluate it. Our next result is as follows:
Theorem.—Let �, � be two compact sets in Rd, d � 1,

with smooth boundaries @�, @�. Then

��N�2 

Ld�1 logL

�2��d�1

ln2

4�2

Z
@�

Z
@�
jnx 	 npjdSxdSp

� o�Ld�1 logL�; (9)

where nx, np are unit normals to @�, @�, respectively. The
full proof is too technical to be included here, and will
appear elsewhere (see, however, [28]). It starts by observ-
ing that

Tr �PQP�2 

�
L

2�

�
2d Z

Rd
A��z�Â��Lz�dz; (10)

where A��z� �
R
Rd ���x����x� z�dx is the volume of

the set � intersected with � shifted by z [i.e., � \ ���
z�], and proceeds with an asymptotic analysis of this
integral.

Note the geometric nature of the coefficient in (9): for a
spherical Fermi sea �, and a convex region � this coeffi-
cient is just the average cross section of � over all direc-
tions. In the more general case the coefficient depends on
the two surfaces and their mutual orientations. Thus (6)
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with (9) establish the scaling O�Ld�1 logL� � S �
O�Ld�1�logL�2� when �, � have smooth boundaries.

Fractal boundaries.—A very interesting enhancement in
the scaling of S occurs if the sets �, � are allowed to have
fractal-like boundaries. Physically, this means that making
the boundaries less regular, makes the typical momentum
states more incompatible with the shape of the region �,
and hence contributes to enhanced entropy when integrat-
ing the external modes. More precisely, it was shown in
[28] that if C1 k h k

�� < Vol�� n ��� h��<C2 k h k
��

for small k h k and some 0<�� � 1, and the same
holds for � with ��, then ��N�2 is bounded above
and below by ~C1;2L

d�min���;��� if �� � �� and
~C1;2Ld��� logL if �� 
 ��. In particular this and (6)
imply that S > 4 ~C1Ld��� logL if �� 
 �� and S >
4 ~C1L

d�min���;��� if �� � �� [29].
Connection to Widom’s conjecture.—It turns out that the

result (9) is a special case of a well-known conjecture by
Widom [14,30]. The problem of time-frequency limiting
mentioned in the introduction leads to a study of the
spectrum of the operator PQP where Q is a time window
scaled by L, and P represents a frequency window. One
way of studying the eigenvalues of PQP is to study the
asymptotic behavior of Trf�PQP�, as L! 1, for some
general class of f. It is conjectured in [14] that for a
function f�t�, analytic on a disc of radius > 1 with f�0� 

0, the following holds as L! 1

Trf�PQP� 

�
L

2�

�
d
f�1�

Z
�

Z
�
dxdp�

�
L

2�

�
d�1 ln2 logL

4�2

�U�f�
Z
@�

Z
@�
jnx 	 npjdSxdSp

� o�Ld�1 logL�; (11)

where nx, np are unit normals to @�, @�, respectively, and

U�f� 

R

1
0
f�t��tf�1�
t�1�t� dt. The formula (11) and a generalized

form of it were proved for d 
 1 in [14,19]. For d � 2 only
special cases were proved [28,30]. Note finally that (9) is a
verification of Widom’s conjecture for the special case
f�t� 
 t�1� t�.

In a broader context one may think of Widom’s con-
jecture (11) as a generalization of the strong (two-term)
Szegö limit theorem (SSLT) for the continuous setting. The
SSLT plays a special role in entanglement entropy [18,31].
The SSLT was initially used by Onsager in his celebrated
computation of the spontaneous magnetization for the 2D
Ising model (see, e.g., [32]). It is interesting to note that in
Onsager’s computation (and also in [18]) the leading
asymptotic term vanishes, and one needs to compute the
subleading term. This is exactly the situation that we have
in the continuous version of the Szegö theorem (11): the
leading term should vanish since h�1� 
 0.

Widom’s conjecture suggests the explicit geometric ex-
pression for the entropy (1). Note that if � 
 � 
 �0; 1�d

then the double integral in (1) equals 4d (twice the number
of faces), so that (1) and (5) are consistent. Note also that
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the coefficient ln2
4�2 in the expression for the number vari-

ance (9) gives a lower estimate for S in (6) within 16% of
the conjectured 1

12 in (1).
Finite temperature.—From the semiclassical point of

view one expects the entropy to be extensive, S� Ld, for
T > 0. This suggests to look for a transition temperature
between the Ld and Ld�1 logL regimes. Let � 
 1=T and
introduce the Fermi-Dirac function k�p� 
 1=�1�
e��jpj

2�
�� (we take @ 
 kB 
 1 and m 
 1=2). The ex-
pression for the entanglement entropy at finite tempera-
tures [8] is given by Trh�QKQ�, where K is the operator of
multiplication by k�p� in momentum space. Semi-
classically, integrating over the phase space one finds [33]

Tr h�QKQ� 

�
L

2�

�
d
Vol���

Z
Rd
h�k�p��dp�O�Ld�1�:

Introducing polar variables and scaling out � gives

S 

�
L

2�

�
d
Vol���jSd�1j


�1�d=2

�

Z 1
e��


du
u
h
�

1

1� u

�

�

�
1�

logu
�


�
�1�d=2

�O�Ld�1�; (12)

which scales as Ld��1
�1�d=2 for �! 1. Comparing
this with the T 
 0 results above we see that for the zero
temperature effect Ld�1 logL to be seen, the transition
temperature should satisfy T
�1�d=2 � logL

L , L!1.
Summary and discussion.—In systems with finite corre-

lation length �, one expects quantities such as the entropy S
and the number variance ��N�2 to scale like the area of the
boundary of the region. The system studied here does not
behave this way. Here, the correlation function hayx ax0 i
decays slowly and the fermion momentum modes are
spread over the entire system and are highly sensitive to
localization in space and consequently the area law is
violated.

Let us summarize the concrete results of this Letter: We
prove that the scaling is of the form Ld�1 logL for cubelike
domains. We find a connection between the scaling behav-
ior of S and a well-known conjecture due to Widom (11),
which suggests the explicit geometric formula (1) for S in
any d. Finally, while Widom’s conjecture is far from being
proven, we find that it holds for ��N�2, and use this to
obtain lower and upper bounds on S. We also find an
enhanced scaling of S for fractal-like boundaries and at
finite temperatures.
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