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Motion of an Electron from a Point Source in Parallel Electric and Magnetic Fields
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Negative ions undergoing near-threshold photodetachment in a weak laser field provide an almost
pointlike, isotropic source of low-energy electrons. External fields exert forces on the emitted coherent
electron wave and direct its motion. Here, we examine the spatial distribution of photodetached electrons
in uniform, parallel electric and magnetic fields. The interplay of the electric and magnetic forces leads to
a surprising intricate shape of the refracted electron wave, and mutiple interfering trajectories generate
complex fringe patterns in the matter wave. The exact quantum solution is best understood in terms of the
classical electron motion.
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Wave-particle dualism is one of the strangest and most
fascinating aspects of quantum mechanics. In his famous
‘‘electron gun’’ thought experiment [1], Richard Feynman
explores what happens if an electron travels simulta-
neously along two trajectories, and interferes with itself.
In the 1980s, Demkov et al. [2] suggested a macroscopic
version of Feynman’s idea: Photodetachment of negative
ions provides a localized source of electrons with fixed
energy, and an externally applied homogeneous electric
field accelerates them. In a uniform force field, there are
always exactly two trajectories that join the source with
any given destination in range [3] (a fact already known to
Galileo). Along each path, the electron wave function
accumulates a phase proportional to the classical action.
Therefore, the electron distribution on a detector perpen-
dicular to the electric field displays a set of macroscopic
concentric interference fringes. These patterns were re-
corded experimentally by Blondel et al. with their ‘‘photo-
detachment microscope’’ [4]. The results are in excellent
agreement with theory [5] and in turn allow precision
measurements of electron affinities [6]. (Recently, spatially
resolved interference structures have also been observed in
photoionization microscopy [7].)

These experiments permit observation of matter waves
in real space, and they show how to guide an expanding
electron cloud using electromagnetic forces. Hence, it is
worthwhile to explore photodetachment in more complex
field configurations. Here, we predict the photoelectron
distribution that will be found on a detector in the presence
of parallel, uniform, static electric and magnetic fields E �
�Eez and B � Bez [8] that was previously studied only
for very weak magnetic fields [9]. (The total photocurrent
has been addressed in Ref. [10].)

Near-threshold photodetachment of negative atomic
ions provides a virtually pointlike electron source with
pure s-wave or p-wave character, and a sharply defined
energy E [11]. (In this Letter we assume s-wave emission.)
The remaining neutral atomic core interacts very weakly
with the ejected electron, and it is an excellent approxima-
tion to ignore that interaction entirely, even for closed
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electron orbits that return to the core; in weak fields,
rescattering has been found to be negligible [12].

The dynamics of the electron cloud is thus controlled
entirely by the external fields E and B. Replacing the
parent ion with an isotropic point source placed at the
coordinate origin, the spreading electron wave obeys the
inhomogeneous stationary Schrödinger equation [13]:

�E�H �r;p�� �r� � C��r�; (1)

where the details of the photon-ion interaction in the
detachment process are summarized in the constant C.
The Hamiltonian H �r;p� for the photoelectron reads

H �r;p� �
p2

2m
�!L�r� p�z �

1

2
m!2

L�
2 � eEz: (2)

Here, e is the elementary charge, �2 � x2 � y2 denotes the
radial distance, and we introduced the Larmor frequency
!L � eB=�2m�.

In order to understand the properties of the resulting
electronic wave function  �r�, it is best to examine the
corresponding classical trajectory field. The equations of
motion derived from Eq. (2) are easy to solve: Each
specific trajectory starts with initial velocity v0 ��������������

2E=m
p

under some polar emission angle � measured
relative to the field axis, and then undergoes uniform
rotation in the polar angle, _� � !L, harmonic oscillation
in the radial coordinate � [14], and uniform acceleration in
the z direction:

��t� � v0 sin�j sin�!Lt�j=!L; (3)

z�t� � v0t cos�� eEt2=�2m�: (4)

The resulting spiraling motion of individual trajectories
(blue curves) is shown in Fig. 1 (left panel).

This plot illustrates that the trajectory field possesses
much more intricate qualities: The initially radially out-
going trajectories, uniformly distributed over all angles,
twist and bend in the external fields, and trace out a
complex pattern. The caustics, the envelopes of this family
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FIG. 1 (color online). Propagation of s-wave photoelectrons, with energy E � 50 �eV, in parallel electric and magnetic fields
E � 15 V=m, B � 0:02 T �� � 5:592�. Panels: (a) The classical trajectory field (blue) traces out an infinite series of caustic surfaces
in �-z space (bold red curves) that begin and end on the symmetry axis. Crossing over a caustic, the number of paths connecting any
given point to the source atom at the origin changes by two; sixfold degeneracy occurs in the diamond-shaped areas. (The z axis, here
increasing downward, has been scaled to emphasize the periodicity of the pattern.) (b) The exact quantum density distribution features
a complex fringe structure that is clearly organized along the classical caustics (overlayed blue dashed curves). Depending on the
number of interfering classical trajectories, distinct interference patterns emerge in each region. Because of the focusing property of
the magnetic field, the probability to find photoelectrons near the symmetry axis is strongly enhanced. (c) Photodetachment
microscope image on a perpendicular detector plane, placed near a constriction of the pattern (z � 16:06 �m). Four-path interference
leads to a complex pattern with evident ‘‘superstructure.’’ (d) Photodetachment microscope image at a distance z � 24:3 �m. Simple,
regular two-path interference dominates the outer areas of the image. A double caustic (dark fringe) separates them from the inner
region, where sixfold degeneracy prevails. In the center of both images, excess density is observed near the ‘‘focal line.’’ A radial
density profile of the electron distribution at a distance z � 45 �m (red dotted line) is displayed in Fig. 3.
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of paths, form an infinite sequence of closed, overlapping,
cylindrically symmetric surfaces (bold red curves) that
usually begin and end on the symmetry axis in cusp singu-
larities [10(c),10(d)]. The geometrical shape of the set of
caustics is determined by a single parameter, the ratio � of
the magnetic and electric forces acting on the electron:

� � v0B=E: (5)

The caustic surfaces are associated with the periodic cy-
clotron motion: The trajectory field carves out the kth
caustic in the interval �k� 1�Tc 	 t 	 kTc, where Tc �
�=!L. The cusps are related to trajectories emitted parallel
to the fields (� � 0; �) and complete cyclotron orbits (t �
kTc). Maximum radial extension (�max � v0=!L) occurs
for perpendicular emission (� � �

2 ) and half-complete or-
10040
bits [t � �k� 1
2�Tc]. Because of the acceleration in the

electric field, the caustics stretch more and more in the z
direction as k grows; at large z, their pattern becomes
periodic in

���
z
p

(see Fig. 1). A detailed description of the
structure of the caustics, and their evolution with changing
� is given in a separate paper [15].

Caustics are boundaries between classically allowed and
forbidden motion: Each time we pass a caustic in an out-
ward direction, a pair of trajectories joining the source with
the destination point r ceases to exist. For fixed r, the
number of interfering classical paths is twice the number
of caustics enclosing it. Allowing r to vary (� > 0), we find
for the maximum count of interfering orbits:

Nmax � 2b�=�c � 4; (6)
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where b. . .c denotes the integer part. (In Fig. 1, �
 5:59,
and maximum degeneracy is sixfold.) Thus, the system
allows us to adjust the number of classical trajectories
simply by changing E or the field strengths E, B. We
note that fourfold degeneracy occurs even at the weakest
magnetic fields (Fig. 2) [9].

Points with � � 0 are exceptional because an infinite
number of trajectories (with fixed �, but arbitrary azimu-
thal emission angle) may intersect there after a full cyclo-
tron orbit. They generate ‘‘focal line segments’’ on the
symmetry axis that connect the cusp singularities.

Using these classical paths, we construct a semiclassical
approximation to the wave function [16]:
FIG. 2 (color online). Distribution of photodetached electrons
(energy E � 100 �eV) in parallel fields E � 100 V=m and B �
5 mT �� � 0:297�. Left panel: Classical trajectory field (blue
curves) and caustics (bold red curves). The pattern expands and
contracts in the rhythm of the cyclotron motion. In the small
diamond-shaped focal regions, centered around zk �
eEk2T2

c=�2m�, the electrons return to the symmetry axis, and
four paths link each point to the source. Between the foci, the
degeneracy is twofold.—The exact density distribution (right
panel) is delineated by the caustics. The focal regions present a
series of ‘‘bottlenecks’’ for the photocurrent characterized by
high electron density j �r�j2 and a complex interference pattern.
Outside the foci, the regular two-path interference pattern pre-
vails, and the charge distribution resembles the purely electric
case [2,6].
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Here, ���r� is the classical density along the �th trajectory
at the endpoint r, W ��r� is the corresponding classical
action, and the Maslov index ���r� counts how often the
trajectory has touched a caustic surface, or crossed through
a focal line, before arriving at r. For improved accuracy of
the approximation, we also include the exponentially sup-
pressed contributions of tunneling trajectories [3]. Figure 3
indicates that Eq. (7) yields an excellent approximation to
the exact density profile, except at the caustics, where it
diverges. An Airy uniform approximation based on the
classical paths corrects this failure, and delivers results
virtually indistinguishable from the quantum calculation
[17].

A section of the exact electron density j �r�j2 is shown
in panel (b) to the right in Fig. 1. To calculate it, we note
that the wave function is just a multiple of the energy Green
function G�r;E� [18]:

 �r� � CG�r;E�; (8)

that fulfils outgoing-wave boundary conditions. The
Hamiltonian (2) is separable, H �H? �H k, so the
energyE? bound in the radial motion, and the energyEk �
E� E? available for motion in z direction, are conserved
individually. The spectrum fE?g of the simple harmonic
oscillator H? is discrete; its eigenstates 	n��� occupy the
Landau levels En � �2n� 1�@!L [19]. Propagation takes
place only in the field direction where the electrons
undergo uniform acceleration, as described by the one-
dimensional Green function Gk�z;Ek� for the
Hamiltonian H k [3]. We then expand the full Green
function G�r;E� into a series over the product states, the
scattering channels 	n���Gk�z;E� En�:

G�r;E� � �
mB
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�E� En � eEz��: (9)

The inverse energy 
 is defined via 
3 � 2m=�@eE�2, and
Ln�u� denotes a Laguerre polynomial. Ai�u� and Ci�u� �
Bi�u� � iAi�u� are, respectively, the regular and outgoing-
wave Airy functions. The result holds for z > 0; for z < 0,
the arguments of the Airy functions must be exchanged.
Except in the limit z! 0, the series (9) converges rapidly.

Conceptually, the semiclassical sum over trajectories (7)
and the quantum mechanical series involving Landau lev-
els (9) are starkly different. Yet, Fig. 1 reveals at once that
the classical trajectory field is the key to an understanding
of the exact solution: The caustics clearly delineate the
features of the quantum distribution, and the regions with
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FIG. 3 (color online). Integrated density profile n��� �
2��j ���j2 of the detached photoelectrons, for normalized
flux 1 s�1, at a distance z � 45 �m from the source.
(Parameters as in Fig. 1.) Blue (solid) curve: Exact quantum
result; green (dashed) curve: Semiclassical approximation, in-
cluding tunneling trajectories. This approximation diverges at
the caustics (red dotted lines), where the number of classical
trajectories (circled numbers) connecting the atom and the
destination point changes. The divergences can be corrected
using uniform approximations.
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two, four, or six interfering paths each possess their own
distinctive fringe structures. Two sections of the electron
density, i.e., photodetachment microscope images in par-
allel fields, are depicted in panels (c) and (d) (center
column in Fig. 1). Close to the caustics, and similarly
near the focal line at the center of the image, the density
is particularly high (dark rings). Regular oscillations remi-
niscent of Blondel’s observations [4,6] emerge in the outer
region where only two paths interfere, whereas at smaller
�, the presence of four or more classical trajectories leads
to more involved patterns.

To summarize, near-threshold photodetachment pro-
vides an almost perfect coherent point source of free
electrons. External fields may be used to guide them and
exert ‘‘quantum control’’ over the propagating wave: For
motion in parallel homogeneous fields, the number of
interfering classical paths can be adjusted simply by tuning
the parameter � (5). Furthermore, this analytically solvable
problem serves to illustrate the power of the semiclassical
method.

A practical problem remains: For typical field strengths
used in photodetachment microscopy experiments [6], the
predicted patterns (while large on an atomic scale) might
be too small to be resolved. In a future Letter we will
consider detachment in parallel, nonuniform field configu-
rations that ‘‘flare out’’ and magnify the interference pat-
tern on the detector.
10040
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